Granular Viscosity, Planetary Rings and Inelastic Particle Collisions

The functional dependencies of the viscosity η on temperature and density, derived for granular gases under certain physical environments— force free, and in a central gravitational field— are compared and numerically checked. It is known that different physical conditions lead to different functional dependencies of the viscosity η on the granular temperature T and also the matter density. This is caused by gradients of volume forces which create curvatures in the particle trajectories (epicycles) which bound the free motion and limit the mean free path l to finite values even for vanishing particle density ρ, where in the force free case l α ρ.1 diverges. This results in the known dependence η α √T in the force- free case for nearly elastic collisions. In planetary rings the transport coefficients of momentum and energy are proportionalto T. We check the validity of these expressions with numerical particle simulations. For planetary rings the dependence of the coefficient of restitution e on the impact velocity v imp is crucialfor their stability. Hence, we present models of the dynamics of the particle collisions, which account for the velocity-dependence e(v imp ) by a visco-elastic model for particle collisions, as well as for the sticking at very low impact velocities. The latter is a further improvement of previous models, and the results are in accordance with laboratory measurements.

[1]  M. Louge,et al.  Inelastic microstructure in rapid granular flows of smooth disks , 1991 .

[2]  L. Spitzer Physics of fully ionized gases , 1956 .

[3]  K. Supulver,et al.  THE STICKING PROPERTIES OF WATER FROST PRODUCED UNDER VARIOUS AMBIENT CONDITIONS , 1997 .

[4]  W. Goldsmith,et al.  Impact: the theory and physical behaviour of colliding solids. , 1960 .

[5]  J. Trulsen Towards a theory of jet streams , 1971 .

[6]  D. Lin,et al.  Collisional properties of ice spheres at low impact velocities , 1988 .

[7]  J. Jenkins,et al.  Grad’s 13-Moment System for a Dense Gas of Inelastic Spheres , 1985 .

[8]  S. Savage Instability of unbounded uniform granular shear flow , 1992, Journal of Fluid Mechanics.

[9]  N. Brilliantov,et al.  The role of particle collisions for the dynamics in planetary rings , 1995 .

[10]  Jürgen Kurths,et al.  Clustering of Granular Assemblies with Temperature Dependent Restitution under Keplerian Differential Rotation , 1997 .

[11]  Chao Zhang Kinetic Theory for Rapid Granular Flows , 1993 .

[12]  S. Tremaine,et al.  The dynamics of dense particle disks , 1987 .

[13]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  S. B. Savage,et al.  Modeling and Granular Material Boundary Value Problems , 1998 .

[15]  Kumbakonam R. Rajagopal,et al.  On flows of granular materials , 1994 .

[16]  G. Kuwabara,et al.  Restitution Coefficient in a Collision between Two Spheres , 1987 .

[17]  H. Salo Numerical Simulations of Dense Collisional Systems with Extended Distribution of Particle Sizes , 1992 .

[18]  H. Herrmann,et al.  Physics of dry granular media , 1998 .

[19]  H. Zebker,et al.  The microwave opacity of Saturn's rings at wavelengths of 3.6 and 13 cm from Voyager 1 radio occultation , 1983 .

[20]  Models of Stress Propagation in Granular Media , 1997, cond-mat/9711135.

[21]  K. Supulver,et al.  Energy Loss and Sticking Mechanisms in Particle Aggregation in Planetesimal Formation , 1996 .

[22]  S. Tremaine,et al.  The velocity dispersion in Saturn's rings , 1978 .

[23]  Spahn,et al.  Model for collisions in granular gases. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  Jürgen Schmidt,et al.  Inelastic Collisions in Planetary Rings: Thickness and Satellite-Induced Structures , 1998 .

[25]  I. Goldhirsch,et al.  Clustering instability in dissipative gases. , 1993, Physical review letters.

[26]  H. Salo Numerical simulations of dense collisional systems , 1991 .

[27]  D. Jeffrey,et al.  Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield , 1984, Journal of Fluid Mechanics.

[28]  P. Bodenheimer,et al.  Collision-induced transport processes in planetary rings , 1984 .

[29]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[30]  J. P. Andrews,et al.  Experiments on impact , 1931 .

[31]  K. Supulver,et al.  The Coefficient of Restitution of Ice Particles in Glancing Collisions: Experimental Results for Unfrosted Surfaces , 1995 .

[32]  J. Jenkins,et al.  On the Vertical Structure of Dilute Planetary Rings , 1994 .

[33]  Jan-Martin Hertzsch,et al.  On Low-Velocity Collisions of Viscoelastic Particles , 1995 .

[34]  E. Marouf,et al.  Theory of radio occultation by Saturn's rings , 1982 .

[35]  D. Lin,et al.  Structure, stability and evolution of Saturn's rings , 1984, Nature.

[36]  S. Araki The dynamics of particle disks: II. Effects of spin degrees of freedom , 1988 .

[37]  Pierre Resibois,et al.  Classical kinetic theory of fluids , 1977 .

[38]  J. Campbell,et al.  Voyager 2 Radio Science Observations of the Uranian System: Atmosphere, Rings, and Satellites , 1986, Science.

[39]  C. V. Raman The photographic study of impact at minimal velocities , 1918 .

[40]  Jack Wisdom,et al.  Local simulations of planetary rings , 1986 .

[41]  K. Tamm Landolt‐Börnstein: Zahlenwerte und Funktionen aus Naturwissenschaft und Technik. Gruppe II: Atom‐ und Molekularphysik. Bd. 5: Molekularakustik. Von W. Schaaffs, Herausgeber: K.‐H. Hellwege und A. M. Hellwege. Springer‐Verlag, Berlin‐Heidelberg‐New York 1967. 286 Seiten. Preis: DM 156.– , 1968 .

[42]  H. Hertz Ueber die Berührung fester elastischer Körper. , 1882 .

[43]  H. Jaeger,et al.  Granular solids, liquids, and gases , 1996 .