Eikonal formulation of large dynamical random matrix models.

The standard approach to dynamical random matrix models relies on the description of trajectories of eigenvalues. Using the analogy from optics, based on the duality between the Fermat principle (rays) and the Huygens principle (wavefronts), we formulate the Hamilton-Jacobi dynamics for large random matrix models. The resulting equations describe a broad class of random matrix models in a unified way, including normal (Hermitian or unitary) as well as strictly non-normal dynamics. This formalism applied to Brownian bridge dynamics allows one to calculate the asymptotics of the Harish-Chandra-Itzykson-Zuber integrals.

[1]  Free Jacobi Process , 2006, math/0606218.

[2]  Burgers' equation in 2D SU(N) YM. , 2008, 0806.0149.

[3]  C. Itzykson,et al.  The planar approximation. II , 1980 .

[4]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[5]  M. Nowak,et al.  Ornstein–Uhlenbeck diffusion of hermitian and non-hermitian matrices—unexpected links , 2015, 1512.06599.

[6]  “Single ring theorem” and the disk-annulus phase transition , 2001, cond-mat/0104072.

[7]  A. Matytsin On the large-N limit of the Itzykson-Zuber integral , 1993, hep-th/9306077.

[8]  Hydrodynamical spectral evolution for random matrices , 2015, 1507.07274.

[9]  C. Beenakker,et al.  Large Petermann factor in chaotic cavities with many scattering channels. , 1999, chao-dyn/9909012.

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  Ofer Zeitouni,et al.  The single ring theorem , 2009, 0909.2214.

[12]  Romuald A. Janik,et al.  Multiplying unitary random matrices—universality and spectral properties , 2003 .

[13]  On a remarkable semigroup of homomorphisms with respect to free multiplicative convolution , 2007, math/0703295.

[14]  Emmanuel Cépa,et al.  BROWNIAN PARTICLES WITH ELECTROSTATIC REPULSION ON THE CIRCLE: DYSON'S MODEL FOR UNITARY RANDOM MATRICES REVISITED , 2001 .

[15]  The spectral density for two-dimensional continuum QCD , 1981 .

[16]  T. Wettig,et al.  Possible large-N transitions for complex Wilson loop matrices , 2008, 0810.1058.

[17]  H. M. Antia Algebraic Eigenvalue Problem , 2012 .

[18]  Wojciech Tarnowski,et al.  Squared eigenvalue condition numbers and eigenvector correlations from the single ring theorem , 2016, 1608.04923.

[19]  Thomas G. Dietterich,et al.  In Advances in Neural Information Processing Systems 12 , 1991, NIPS 1991.

[20]  Harish-Chandra Differential Operators on a Semisimple Lie Algebra , 1957 .

[21]  Z. Burda,et al.  Unveiling the significance of eigenvectors in diffusing non-Hermitian matrices by identifying the underlying Burgers dynamics , 2015, 1503.06846.

[22]  M. Berry,et al.  Colored diffraction catastrophes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[23]  J. Grela Diffusion method in random matrix theory , 2015, 1506.05927.

[24]  Paul Bourgade,et al.  The distribution of overlaps between eigenvectors of Ginibre matrices , 2018, Probability Theory and Related Fields.

[25]  P. Biane Segal–Bargmann Transform, Functional Calculus on Matrix Spaces and the Theory of Semi-circular and Circular Systems , 1997 .

[26]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[27]  Alexandru Nica,et al.  Free random variables , 1992 .

[28]  D. Voiculescu Addition of certain non-commuting random variables , 1986 .

[29]  Jerzy Jurkiewicz,et al.  Infinite products of large random matrices and matrix-valued diffusion , 2003 .

[30]  H. Yau,et al.  A Dynamical Approach to Random Matrix Theory , 2017 .

[31]  P. Warchol,et al.  Full Dysonian dynamics of the complex Ginibre ensemble , 2018, Journal of Physics A: Mathematical and Theoretical.

[32]  U. Haagerup,et al.  Brown's Spectral Distribution Measure for R-Diagonal Elements in Finite von Neumann Algebras☆ , 2000 .

[33]  Sean O'Rourke,et al.  The Elliptic Law , 2012, 1208.5883.