暂无分享,去创建一个
[1] Panu Raatikainen. On Interpreting Chaitin's Incompleteness Theorem , 1998, J. Philos. Log..
[2] Claus-Peter Schnorr,et al. A unified approach to the definition of random sequences , 1971, Mathematical systems theory.
[3] Liang Yu,et al. On initial segment complexity and degrees of randomness , 2008 .
[4] Gregory J. Chaitin,et al. Information-Theoretic Limitations of Formal Systems , 1974, JACM.
[5] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[6] W. Feller,et al. An Introduction to Probability Theory and Its Applications, Vol. 1 , 1967 .
[7] Ray J. Solomonoff,et al. A Formal Theory of Inductive Inference. Part I , 1964, Inf. Control..
[8] Joan Rand Moschovakis,et al. An intuitionistic theory of lawlike, choice and lawless sequences , 1993 .
[9] D. Huffman. A Method for the Construction of Minimum-Redundancy Codes , 1952 .
[10] V. Becher,et al. From index sets to randomness in ∅n: random reals and possibly infinite computations part II , 2009, The Journal of Symbolic Logic.
[11] Gregory J. Chaitin,et al. A recent technical report , 1974, SIGA.
[12] A. Kolmogorov. Three approaches to the quantitative definition of information , 1968 .
[13] Robert I. Soare,et al. Computability and Recursion , 1996, Bulletin of Symbolic Logic.
[14] Ming Li,et al. An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.
[15] David A. Huffman,et al. A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.
[16] Santiago Figueira,et al. Randomness and halting probabilities , 2006, Journal of Symbolic Logic.
[17] Gregory J. Chaitin,et al. On the Length of Programs for Computing Finite Binary Sequences: statistical considerations , 1969, JACM.
[18] Marie Ferbus-Zanda,et al. Kolmogorov complexity and set theoretical representations of integers , 2006, Math. Log. Q..
[19] Annick Lesne,et al. L'héritage de Kolmogorov en mathématiques , 2004 .
[20] Erhard Tornier,et al. Grundlagen der Wahrscheinlichkeitsrechnung , 1933 .
[21] Andrei Voronkov,et al. Current Trends in Theoretical Computer Science , 2001 .
[22] Verónica Becher,et al. Random reals à la Chaitin with or without prefix-freeness , 2007, Theor. Comput. Sci..
[23] Marie Ferbus-Zanda,et al. Is Randomness "Native" to Computer Science? , 2008, Bull. EATCS.
[24] J. Heijenoort. From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .
[25] Joan Rand Moschovakis,et al. More about relatively lawless sequences , 1994, Journal of Symbolic Logic.
[26] Wolfgang Merkle,et al. Reconciling Data Compression and Kolmogorov Complexity , 2007, ICALP.
[27] Donald Ervin Knuth,et al. The Art of Computer Programming, 2nd Ed. (Addison-Wesley Series in Computer Science and Information , 1978 .
[28] Claus-Peter Schnorr,et al. The process complexity and effective random tests. , 1972, STOC.
[29] Don Fallis. The Source of Chaitin's Incorrectness , 1996 .
[30] A. Shiryayev. On Tables of Random Numbers , 1993 .
[31] A. A.. Probability, Statistics and Truth , 1940, Nature.
[32] S. S. Wilks,et al. Probability, statistics and truth , 1939 .
[33] David Thomas,et al. The Art in Computer Programming , 2001 .
[34] Hector Zenil. Randomness Through Computation: Some Answers, More Questions , 2011 .
[35] A. N. Kolmogorov. Combinatorial foundations of information theory and the calculus of probabilities , 1983 .
[36] C. Schnorr. Zufälligkeit und Wahrscheinlichkeit , 1971 .
[37] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1951 .
[38] Joan Rand Moschovakis,et al. A Classical View of the Intuitionistic Continuum , 1996, Ann. Pure Appl. Log..
[39] G. Chaitin. Computational complexity and Gödel's incompleteness theorem , 1971, SIGA.
[40] Cristian S. Calude,et al. Is complexity a source of incompleteness? , 2004, Adv. Appl. Math..
[41] Gregory J. Chaitin,et al. On the Length of Programs for Computing Finite Binary Sequences , 1966, JACM.
[42] Péter Gács,et al. Exact Expressions for Some Randomness Tests , 1979, Math. Log. Q..
[43] Marcus Hutter,et al. Algorithmic Information Theory , 1977, IBM J. Res. Dev..
[44] Wolfgang Merkle,et al. A Simple Proof of Miller-Yu Theorem , 2008, Fundam. Informaticae.
[45] André Nies,et al. Program Size Complexity for Possibly Infinite Computations , 2005, Notre Dame J. Formal Log..
[46] Ray J. Solomonoff,et al. A Formal Theory of Inductive Inference. Part II , 1964, Inf. Control..
[47] Per Martin-Löf,et al. The Definition of Random Sequences , 1966, Inf. Control..
[48] André Nies,et al. Randomness, relativization and Turing degrees , 2005, J. Symb. Log..
[49] Andrei N. Kolmogorov,et al. On Tables of Random Numbers (Reprinted from "Sankhya: The Indian Journal of Statistics", Series A, Vol. 25 Part 4, 1963) , 1998, Theor. Comput. Sci..
[50] Donald Ervin Knuth,et al. The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .
[51] B. Russell. Mathematical Logic as Based on the Theory of Types , 1908 .
[52] Guillaume Bonfante,et al. On Abstract Computer Virology from a Recursion Theoretic Perspective , 2006, Journal in Computer Virology.
[53] A. Kolmogoroff. Grundbegriffe der Wahrscheinlichkeitsrechnung , 1933 .
[54] Richard Von Mises,et al. Probability, statistics and truth , 1939 .
[55] R. Mises. Grundlagen der Wahrscheinlichkeitsrechnung , 1919 .
[56] L. Levin,et al. THE COMPLEXITY OF FINITE OBJECTS AND THE DEVELOPMENT OF THE CONCEPTS OF INFORMATION AND RANDOMNESS BY MEANS OF THE THEORY OF ALGORITHMS , 1970 .
[57] P. Martin-Lof,et al. Complexity Oscillations in Infinite Binary Sequences , 2004 .
[58] A. N. Kolmogorov,et al. Foundations of the theory of probability , 1960 .
[59] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[60] Jean-Paul Delahaye,et al. Complexités : Aux limites des mathématiques et de l'informatique , 2006 .
[61] Claus-Peter Schnorr,et al. Process complexity and effective random tests , 1973 .
[62] D. Lacombe,et al. La théorie des fonctions récursives et ses applications. (Exposé d'information générale) , 1960 .
[63] Max L. Warshauer,et al. Lecture Notes in Mathematics , 2001 .
[64] Verónica Becher,et al. Random reals and possibly infinite computations Part I: Randomness in ∅′ , 2005, Journal of Symbolic Logic.