Zero Dynamics for waves on Networks

Consider a network with linear dynamics on the edges, and observation and control in the nodes. Assume that on the edges there is no damping, and so the dynamics can be described by an infinite-dimensional, port-Hamiltonian system. For general infinite-dimensional systems, the zero dynamics can be difficult to characterize and are sometimes ill-posed. However, for this class of systems the zero dynamics are shown to be well-defined. Using the underlying structure, simple characterizations and a constructive procedure can be obtained.

[1]  Hitay Özbay,et al.  Robust Control of Infinite Dimensional Systems: Frequency Domain Methods , 1996 .

[2]  J. A. Villegas,et al.  A Port-Hamiltonian Approach to Distributed Parameter Systems , 2007 .

[3]  Kirsten Morris,et al.  Invariant zeros of SISO infinite-dimensional systems , 2010, Int. J. Control.

[4]  Kirsten Morris,et al.  Zeros of SISO Infinite-Dimensional Systems , 2002 .

[5]  Stuart Townley,et al.  Adaptive Low-Gain Integral Control of Multivariable Well-Posed Linear Systems , 2002, SIAM J. Control. Optim..

[6]  Sergey Nikitin,et al.  HIGH GAIN OUTPUT FEEDBACKS FOR SYSTEMS WITH DISTRIBUTED PARAMETERS , 1999 .

[7]  Hans Zwart,et al.  Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain , 2010 .

[8]  Douglas K. Lindner,et al.  Zeros of modal models of flexible structures , 1993 .

[9]  C. Byrnes Root-Locus and Boundary Feedback Design for a Class of Distributed Parameter Systems , 1994 .

[10]  Bruce A. Francis,et al.  Feedback Control Theory , 1992 .

[11]  Hans Zwart,et al.  On robust PI-control of infinite-dimensional systems , 1990 .

[12]  Hans Zwart,et al.  Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces , 2012 .

[13]  Stuart Townley,et al.  Adaptive control of infinite-dimensional systems without parameter estimation: an overview , 1997 .

[14]  Kirsten Morris,et al.  Feedback invariance of SISO infinite-dimensional systems , 2007, Math. Control. Signals Syst..

[15]  Robert L. Clark,et al.  Accounting for Out-of-Bandwidth Modes in the Assumed Modes Approach: Implications on Colocated Output Feedback Control , 1997 .

[16]  Kirsten Morris,et al.  Introduction to Feedback Control , 2001 .

[17]  A. Isidori Nonlinear Control Systems , 1985 .

[18]  David H. Owens,et al.  Robust High-gain Feedback Control of Infinite-Dimensional Minimum-Phase Systems , 1987 .

[19]  Hans Zwart,et al.  Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators , 2005, SIAM J. Control. Optim..

[20]  Carsten Trunk,et al.  Minimum-Phase Infinite-Dimensional Second-Order Systems , 2007, IEEE Transactions on Automatic Control.

[21]  Hans Zwart,et al.  Geometric Theory for Infinite Dimensional Systems , 1989 .