Influence of topological structure and chemical segregation on the thermal and mechanical properties of Pd–Si nanoglasses

[1]  S. Nandam Structure and mechanical properties of metallic nanoglasses , 2019 .

[2]  K. Albe,et al.  Influence of Microstructural Features on the Plastic Deformation Behavior of Metallic Nanoglasses , 2018, Acta Materialia.

[3]  B. Sun,et al.  Micromechanical mechanism of yielding in dual nano-phase metallic glass , 2018, Scripta Materialia.

[4]  H. Gleiter,et al.  Nanoscale Structural Evolution and Anomalous Mechanical Response of Nanoglasses by Cryogenic Thermal Cycling. , 2018, Nano letters.

[5]  W. Wang,et al.  Ultrastable metallic glasses formed on cold substrates , 2018, Nature Communications.

[6]  K. Albe,et al.  Microstructure formation of metallic nanoglasses: Insights from molecular dynamics simulations , 2018 .

[7]  G. Wilde,et al.  Effect of copper addition on the glass forming ability in Pd-Si binary amorphous alloying system , 2017 .

[8]  Y. Ivanisenko,et al.  Cu-Zr nanoglasses: Atomic structure, thermal stability and indentation properties , 2017 .

[9]  E. Ma,et al.  Tailoring structural inhomogeneities in metallic glasses to enable tensile ductility at room temperature , 2016 .

[10]  Y. Ivanisenko,et al.  Surface segregation of primary glassy nanoparticles of Fe90Sc10 nanoglass , 2016 .

[11]  K. Albe,et al.  Interfaces and interphases in nanoglasses: Surface segregation effects and their implications on structural properties , 2016 .

[12]  W. Goddard,et al.  How the toughness in metallic glasses depends on topological and chemical heterogeneity , 2016, Proceedings of the National Academy of Sciences.

[13]  H. Gleiter,et al.  Sample size effects on strength and deformation mechanism of Sc 75 Fe 25 nanoglass and metallic glass , 2016 .

[14]  W. Goddard,et al.  Ordering and dimensional crossovers in metallic glasses and liquids , 2016, 1601.02057.

[15]  W. Wang,et al.  Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids , 2015, Nature Communications.

[16]  E. Ma Tuning order in disorder. , 2015, Nature materials.

[17]  H. Gleiter,et al.  Plasticity of a scandium-based nanoglass , 2015 .

[18]  K. Albe,et al.  Influence of grain size and composition, topology and excess free volume on the deformation behavior of Cu–Zr nanoglasses , 2015, Beilstein journal of nanotechnology.

[19]  N. Chen,et al.  The ultrastable kinetic behavior of an Au-based nanoglass , 2014 .

[20]  P. Branicio,et al.  Composition and grain size effects on the structural and mechanical properties of CuZr nanoglasses , 2014 .

[21]  K. Albe,et al.  Enhancing the plasticity of metallic glasses: Shear band formation, nanocomposites and nanoglasses investigated by molecular dynamics simulations , 2013 .

[22]  R. Brand,et al.  Evidence for enhanced ferromagnetism in an iron-based nanoglass , 2013 .

[23]  Daniel B. Miracle,et al.  The density and packing fraction of binary metallic glasses , 2013 .

[24]  Y.Q. Cheng,et al.  Local Topology vs. Atomic-Level Stresses as a Measure of Disorder: Correlating Structural Indicators for Metallic Glasses , 2013 .

[25]  K. Albe,et al.  Chemical and topological order in shear bands of Cu64Zr36 and Cu36Zr64 glasses , 2012 .

[26]  E. Ma,et al.  Short-range structural signature of excess specific heat and fragility of metallic-glass-forming supercooled liquids , 2012 .

[27]  H. Gleiter,et al.  Atomic structure and structural stability of Sc75Fe25 nanoglasses. , 2012, Nano letters.

[28]  M. Soljačić,et al.  Probing topological protection using a designer surface plasmon structure , 2012, Nature Communications.

[29]  Jun Sun,et al.  Approaching the ideal elastic limit of metallic glasses , 2012, Nature Communications.

[30]  J. Greer,et al.  Nanolaminates Utilizing Size‐Dependent Homogeneous Plasticity of Metallic Glasses , 2011 .

[31]  H. Gleiter,et al.  Structure, stability and mechanical properties of internal interfaces in Cu64Zr36 nanoglasses studied by MD simulations , 2011 .

[32]  Weihua Wang,et al.  Homogeneous deformation of metallic glass at room temperature reveals large dilatation , 2011 .

[33]  Evan Ma,et al.  Atomic-level structure and structure–property relationship in metallic glasses , 2011 .

[34]  H. Gleiter,et al.  Deformation behavior of bulk and nanostructured metallic glasses studied via molecular dynamics simulations , 2011 .

[35]  S. Lee,et al.  Compression testing of metallic glass at small length scales: Effects on deformation mode and stability , 2010 .

[36]  D. V. Louzguine-Luzgin,et al.  An assessment of binary metallic glasses: correlations between structure, glass forming ability and stability , 2010 .

[37]  G. Wang,et al.  Transformation-mediated ductility in CuZr-based bulk metallic glasses. , 2010, Nature materials.

[38]  E. Ma,et al.  Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: The roles of atomic configuration and alloy composition , 2009 .

[39]  H. Gleiter,et al.  From nanoglasses to bulk massive glasses , 2009 .

[40]  H. Gleiter Our thoughts are ours, their ends none of our own: Are there ways to synthesize materials beyond the limitations of today? , 2008 .

[41]  E. Ma,et al.  Local order influences initiation of plastic flow in metallic glass: Effects of alloy composition and sample cooling history , 2008 .

[42]  C. Volkert,et al.  Effect of sample size on deformation in amorphous metals , 2008 .

[43]  T. Hufnagel,et al.  Mechanical behavior of amorphous alloys , 2007 .

[44]  Zhi Cheng Li,et al.  Semi-ellipse method for accounting for the pile-up contact area during nanoindentation with the Berkovich indenter , 2006 .

[45]  J. Bai,et al.  Atomic packing and short-to-medium-range order in metallic glasses , 2006, Nature.

[46]  Weihua Wang,et al.  Bulk metallic glasses , 2004 .

[47]  Hays,et al.  Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions , 2000, Physical review letters.

[48]  A. L. Greer Metallic Glasses , 1995, Science.

[49]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[50]  K. Kelton,et al.  A study of the devitrification of Pd82Si18 over a wide temperature range , 1985 .

[51]  A. Ondrejka,et al.  The study of transformation kinetics of the amorphous PdSi alloys , 1976 .

[52]  I. N. Sneddon The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile , 1965 .

[53]  H. E. Kissinger Reaction Kinetics in Differential Thermal Analysis , 1957 .

[54]  S. Ringer,et al.  Introducing a strain-hardening capability to improve the ductility of bulk metallic glasses via severe plastic deformation , 2012 .

[55]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .