Kinetic limits for pair-interaction driven master equations and biological swarm models

We consider a class of stochastic processes modeling binary interactions in an N-particle system. Examples of such systems can be found in the modeling of biological swarms. They lead to the definition of a class of master equations that we call pair interaction driven master equations. We prove a propagation of chaos result for this class of master equations which generalizes Mark Kac's well know result for the Kac model in kinetic theory. We use this result to study kinetic limits for two biological swarm models. We show that propagation of chaos may be lost at large times and we exhibit an example where the invariant density is not chaotic.

[1]  Pierre Degond,et al.  A Macroscopic Model for a System of Swarming Agents Using Curvature Control , 2010, 1010.5405.

[2]  C. Graham,et al.  Stochastic particle approximations for generalized Boltzmann models and convergence estimates , 1997 .

[3]  D. Maslen The eigenvalues of Kac's master equation , 2003 .

[4]  M. Kac Foundations of Kinetic Theory , 1956 .

[5]  Carl Graham,et al.  Probabilistic tools and Monte-Carlo approximations for some Boltzmann equations , 2001 .

[6]  A. Czirók,et al.  Collective Motion , 1999, physics/9902023.

[7]  P. Diaconis,et al.  Bounds for Kac's Master Equation , 1999 .

[8]  E. Carlen,et al.  Kinetic Theory and the Kac Master Equation , 2011, 1107.1856.

[9]  Emmanuel Boissard,et al.  Trail formation based on directed pheromone deposition , 2011, Journal of mathematical biology.

[10]  A. Sznitman Topics in propagation of chaos , 1991 .

[11]  S. Mischler,et al.  Kac’s program in kinetic theory , 2011, Inventiones mathematicae.

[12]  O. Lanford Time evolution of large classical systems , 1975 .

[13]  E. Janvresse Spectral gap for Kac's model of Boltzmann equation , 2001 .

[14]  Carlo Cercignani,et al.  The Derivation of the Boltzmann Equation , 1997 .

[15]  E. Carlen,et al.  Many-body aspects of approach to equilibrium , 2000 .

[16]  A. Mogilner,et al.  A non-local model for a swarm , 1999 .

[17]  Michel Droz,et al.  Hydrodynamic equations for self-propelled particles: microscopic derivation and stability analysis , 2009, 0907.4688.

[18]  R. Illner,et al.  Global validity of the Boltzmann equation for a two-dimensional rare gas in vacuum , 1986 .

[19]  E. Carlen,et al.  Determination of the Spectral Gap for Kac's Master Equation and Related Stochastic Evolutions , 2001, math-ph/0109003.

[20]  Leah Edelstein-Keshet,et al.  Inferring individual rules from collective behavior , 2010, Proceedings of the National Academy of Sciences.

[21]  I. Couzin,et al.  Collective memory and spatial sorting in animal groups. , 2002, Journal of theoretical biology.

[22]  Vicsek,et al.  Novel type of phase transition in a system of self-driven particles. , 1995, Physical review letters.

[23]  José A. Carrillo,et al.  Mean-field limit for the stochastic Vicsek model , 2011, Appl. Math. Lett..

[24]  Jesús Rosado,et al.  Asymptotic Flocking Dynamics for the Kinetic Cucker-Smale Model , 2010, SIAM J. Math. Anal..

[25]  Felipe Cucker,et al.  Emergent Behavior in Flocks , 2007, IEEE Transactions on Automatic Control.

[26]  Francois Bolley Jos Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming , 2010 .

[27]  J. Gillis,et al.  Probability and Related Topics in Physical Sciences , 1960 .

[28]  S. Mischler,et al.  Quantitative uniform in time chaos propagation for Boltzmann collision processes , 2010, 1001.2994.

[29]  Pierre Degond,et al.  HYDRODYNAMIC MODELS OF SELF-ORGANIZED DYNAMICS: DERIVATION AND EXISTENCE THEORY ∗ , 2011, 1108.3160.

[30]  Global validity of the Boltzmann equation for a three-dimensional rare gas in vacuum , 1986 .

[31]  C. Villani,et al.  Entropy and chaos in the Kac model , 2008, 0808.3192.

[32]  C. Cercignani,et al.  On the Self-Similar Asymptotics for Generalized Nonlinear Kinetic Maxwell Models , 2006, math-ph/0608035.

[33]  Pierre Degond,et al.  Continuum limit of self-driven particles with orientation interaction , 2007, 0710.0293.

[34]  A. Bertozzi,et al.  State Transitions and the Continuum Limit for a 2D Interacting, Self-Propelled Particle System , 2006, nlin/0606031.

[35]  P. Krapivsky,et al.  Alignment of rods and partition of integers. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  J. Toner,et al.  Hydrodynamics and phases of flocks , 2005 .

[37]  O. Lanford,et al.  On a derivation of the Boltzmann equation , 1983 .

[38]  D. Grünbaum Align in the Sand , 2006, Science.

[39]  R. Illner,et al.  Global validity of the Boltzmann equation for two- and three-dimensional rare gas in vacuum: Erratum and improved result , 1989 .

[40]  I. Aoki A simulation study on the schooling mechanism in fish. , 1982 .

[41]  Hans G. Othmer,et al.  The Diffusion Limit of Transport Equations Derived from Velocity-Jump Processes , 2000, SIAM J. Appl. Math..

[42]  I. Couzin,et al.  Inferring the structure and dynamics of interactions in schooling fish , 2011, Proceedings of the National Academy of Sciences.

[43]  S. Méléard Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models , 1996 .

[44]  A. Bertozzi,et al.  A Nonlocal Continuum Model for Biological Aggregation , 2005, Bulletin of mathematical biology.

[45]  Mirosław Lachowicz,et al.  Individually-based Markov processes modeling nonlinear systems in mathematical biology , 2011 .

[46]  K. Painter Modelling cell migration strategies in the extracellular matrix , 2009, Journal of mathematical biology.

[47]  An interacting particle model with compact hierarchical structure , 2011 .

[48]  E. Bertin,et al.  Boltzmann and hydrodynamic description for self-propelled particles. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Luisa Arlotti,et al.  A discrete boltzmann-type model of swarming , 2005, Math. Comput. Model..

[50]  H. McKean An exponential formula for solving Boltzmann's equation for a Maxwellian gas* , 1967 .