Emerging Vertical Nanostructures for High-Performance Supercapacitor Applications

[1]  S. Ghosh,et al.  Temporal-stability of plasma functionalized vertical graphene electrodes for charge storage , 2018, Journal of Power Sources.

[2]  S. Ghosh,et al.  Plasma-tuneable oxygen functionalization of vertical graphenes enhance electrochemical capacitor performance , 2018, Energy Storage Materials.

[3]  G. Bidan,et al.  Unveiling the ionic exchange mechanisms in vertically-oriented graphene nanosheet supercapacitor electrodes with electrochemical quartz crystal microbalance and ac-electrogravimetry , 2018, Electrochemistry Communications.

[4]  S. Ghosh,et al.  A review on metal nitrides/oxynitrides as an emerging supercapacitor electrode beyond oxide , 2018, Korean Journal of Chemical Engineering.

[5]  Yaping Zhao,et al.  Fabrication of highly ordered polyaniline nanocone on pristine graphene for high-performance supercapacitor electrodes , 2018 .

[6]  S. Ghosh,et al.  Plasma-electric field controlled growth of oriented graphene for energy storage applications , 2018, 2206.01996.

[7]  S. Ghosh,et al.  Aging effects on vertical graphene nanosheets and their thermal stability , 2018, 2206.11692.

[8]  W. Fei,et al.  Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor , 2018 .

[9]  Aneeya K. Samantara,et al.  Highly ordered 1D NiCo2O4 nanorods on graphene: An efficient dual-functional hybrid materials for electrochemical energy conversion and storage applications , 2018 .

[10]  A. Dive,et al.  Ion Storage in Nanoconfined Interstices Between Vertically Aligned Nanotubes in Electric Double-Layer Capacitors , 2018 .

[11]  K. Cen,et al.  Design of Supercapacitor Electrodes Using Molecular Dynamics Simulations , 2018, Nano-Micro Letters.

[12]  S. Ghosh,et al.  Enhanced supercapacitance of activated vertical graphene nanosheets in hybrid electrolyte , 2017 .

[13]  A. Arman,et al.  Electrodes based on nano-tree-like vanadium nitride and carbon nanotubes for micro-supercapacitors , 2017, Journal of Materials Science & Technology.

[14]  Sanjay Dhar Roy,et al.  Recent developed different structural nanomaterials and their performance for supercapacitor application , 2017 .

[15]  R. K. Mishra,et al.  Petal-like MoS 2 nanostructures with metallic 1 T phase for high performance supercapacitors , 2017 .

[16]  Hao Jiang,et al.  Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design , 2017, Advanced science.

[17]  D. Dubal,et al.  Decoration of Ultrathin MoS2 Nanoflakes over MWCNTs: Enhanced Supercapacitive Performance through Electrode to Symmetric All‐Solid‐State Device , 2017 .

[18]  Xiao Zhang,et al.  Controllable synthesis of cross-linked CoAl-LDH/NiCo2S4 sheets for high performance asymmetric supercapacitors , 2017 .

[19]  K. Fong,et al.  Multidimensional performance optimization of conducting polymer-based supercapacitor electrodes , 2017 .

[20]  Lina N. Khandare,et al.  Gold nanoparticles decorated MnO 2 nanowires for high performance supercapacitor , 2017 .

[21]  C. Li,et al.  Hierarchical design of Cu1−xNixS nanosheets for high-performance asymmetric solid-state supercapacitors , 2017 .

[22]  S. Ghosh,et al.  Scalable transfer of vertical graphene nanosheets for flexible supercapacitor applications , 2017, Nanotechnology.

[23]  Q. Ding,et al.  Vertically-aligned Mn(OH)2 nanosheet films for flexible all-solid-state electrochemical supercapacitors , 2017, Journal of Materials Science: Materials in Electronics.

[24]  S. Ghosh,et al.  Process-specific mechanisms of vertically oriented graphene growth in plasmas , 2017, Beilstein journal of nanotechnology.

[25]  L. Qu,et al.  Built Structure of Ordered Vertically Aligned Codoped Carbon Nanowire Arrays for Supercapacitors. , 2017, ACS applied materials & interfaces.

[26]  G. Urban,et al.  High surface hierarchical carbon nanowalls synthesized by plasma deposition using an aromatic precursor , 2017 .

[27]  Chao Li,et al.  Asymmetric Supercapacitor Electrodes and Devices , 2017, Advanced materials.

[28]  V. Shanov,et al.  Three-dimensional, free-standing polyaniline/carbon nanotube composite-based electrode for high-performance supercapacitors , 2017 .

[29]  S. Ghosh,et al.  Transfer of Vertical Graphene Nanosheets onto Flexible Substrates towards Supercapacitor Application , 2017, 1704.03227.

[30]  S. Ghosh,et al.  Supercapacitive vertical graphene nanosheets in aqueous electrolytes , 2017 .

[31]  P. Schmuki,et al.  Highly Conducting Spaced TiO2 Nanotubes Enable Defined Conformal Coating with Nanocrystalline Nb2 O5 and High Performance Supercapacitor Applications. , 2017, Small.

[32]  G. Chen,et al.  Electrolytes for electrochemical energy storage , 2017 .

[33]  Juan Sun,et al.  Wrapping Aligned Carbon Nanotube Composite Sheets around Vanadium Nitride Nanowire Arrays for Asymmetric Coaxial Fiber-Shaped Supercapacitors with Ultrahigh Energy Density. , 2017, Nano letters.

[34]  M. Terrones,et al.  Aligned carbon nanotube/zinc oxide nanowire hybrids as high performance electrodes for supercapacitor applications , 2017 .

[35]  H. Tomiyasu,et al.  An aqueous electrolyte of the widest potential window and its superior capability for capacitors , 2017, Scientific Reports.

[36]  Lu Zhang,et al.  Flexible Micro-Supercapacitor Based on Graphene with 3D Structure. , 2017, Small.

[37]  J. Owen,et al.  Effect of oxidative surface treatments on charge storage at titanium nitride surfaces for supercapacitor applications , 2017 .

[38]  Hee-jee Kim,et al.  Fabrication of a snail shell-like structured MnO2@CoNiO2 composite electrode for high performance supercapacitors , 2017 .

[39]  Li Zhang,et al.  Design of Architectures and Materials in In‐Plane Micro‐supercapacitors: Current Status and Future Challenges , 2017, Advanced materials.

[40]  K. Cen,et al.  Molecular Origin of Electric Double-Layer Capacitance at Multilayer Graphene Edges. , 2017, The journal of physical chemistry letters.

[41]  K. Cen,et al.  Wettability of vertically-oriented graphenes with different intersheet distances , 2017 .

[42]  B. D. Boruah,et al.  A flexible ternary oxide based solid-state supercapacitor with excellent rate capability , 2016 .

[43]  Jianjun Jiang,et al.  Unraveling the different charge storage mechanism in T and H phases of MoS2 , 2016 .

[44]  Yeonwoong Jung,et al.  High-Performance One-Body Core/Shell Nanowire Supercapacitor Enabled by Conformal Growth of Capacitive 2D WS2 Layers. , 2016, ACS nano.

[45]  Shovan Mondal Recent advancement of Ullmann-type coupling reactions in the formation of C–C bond , 2016, ChemTexts.

[46]  N. Arul,et al.  Review on α-Fe 2 O 3 based negative electrode for high performance supercapacitors , 2016 .

[47]  A. Balducci Electrolytes for high voltage electrochemical double layer capacitors: A perspective article , 2016 .

[48]  K. Cen,et al.  Edge effects in vertically-oriented graphene based electric double-layer capacitors , 2016 .

[49]  Y. Gogotsi,et al.  Synthesis of Two‐Dimensional Materials for Capacitive Energy Storage , 2016, Advanced materials.

[50]  Leijiang Zhang,et al.  Understanding the growth mechanism of vertically aligned graphene and control of its wettability , 2016 .

[51]  Rudolf Holze,et al.  Supercapacitors: from the Leyden jar to electric busses , 2016, ChemTexts.

[52]  I. Kinloch,et al.  Comparison of Two-Dimensional Transition Metal Dichalcogenides for Electrochemical Supercapacitors , 2016 .

[53]  Eider Goikolea,et al.  Review on supercapacitors: Technologies and materials , 2016 .

[54]  M. Simpson,et al.  Electrochemical Synthesis of Graphene/MnO2 Nano-Composite for Application to Supercapacitor Electrode. , 2016, Journal of nanoscience and nanotechnology.

[55]  D. Dubal,et al.  MoS2 ultrathin nanoflakes for high performance supercapacitors: room temperature chemical bath deposition (CBD) , 2016 .

[56]  N. Xu,et al.  Morphology Effect of Vertical Graphene on the High Performance of Supercapacitor Electrode. , 2016, ACS applied materials & interfaces.

[57]  R. Prasanth,et al.  Enhancement of electrochemical capacitance by tailoring the geometry of TiO2 nanotube electrodes , 2015 .

[58]  Guoxiu Wang,et al.  Sustainable process for all-carbon electrodes: Horticultural doping of natural-resource-derived nano-carbons for high-performance supercapacitors , 2015 .

[59]  Chandrakant D. Lokhande,et al.  Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel , 2015, Scientific Reports.

[60]  M. Qorbani,et al.  Hierarchical Co3O4/Co(OH)2 Nanoflakes as a Supercapacitor Electrode: Experimental and Semi-Empirical Model. , 2015, ACS applied materials & interfaces.

[61]  Bing Li,et al.  Leaf Vein‐Inspired Nanochanneled Graphene Film for Highly Efficient Micro‐Supercapacitors , 2015 .

[62]  M. Chhowalla,et al.  Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. , 2015, Nature nanotechnology.

[63]  J. Chae,et al.  Cell voltage versus electrode potential range in aqueous supercapacitors , 2015, Scientific Reports.

[64]  Jayan Thomas,et al.  Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions , 2015 .

[65]  J. Tu,et al.  Metal oxide/hydroxide-based materials for supercapacitors , 2014 .

[66]  A. G. Kurenya,et al.  Supercapacitor performance of vertically aligned multiwall carbon nanotubes produced by aerosol-assisted CCVD method , 2014 .

[67]  A. Rastogi,et al.  Vertically aligned ZnO nanorod core-polypyrrole conducting polymer sheath and nanotube arrays for electrochemical supercapacitor energy storage , 2014, Nanoscale Research Letters.

[68]  Jun Yan,et al.  Al and Co co-doped α-Ni(OH)2/graphene hybrid materials with high electrochemical performances for supercapacitors , 2014 .

[69]  V. Presser,et al.  Carbons and Electrolytes for Advanced Supercapacitors , 2014, Advanced materials.

[70]  Y. Yoon,et al.  Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors. , 2014, ACS nano.

[71]  B. Dunn,et al.  Where Do Batteries End and Supercapacitors Begin? , 2014, Science.

[72]  C. Das,et al.  Growth of Vertically Aligned Tunable Polyaniline on Graphene/ZrO2 Nanocomposites for Supercapacitor Energy‐Storage Application , 2014 .

[73]  C. Rout,et al.  Supercapacitor electrodes based on layered tungsten disulfide-reduced graphene oxide hybrids synthesized by a facile hydrothermal method. , 2013, ACS applied materials & interfaces.

[74]  Zhongfan Liu,et al.  The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet , 2013, Scientific Reports.

[75]  Ananthakumar Ramadoss,et al.  Vertically aligned TiO2 nanorod arrays for electrochemical supercapacitor , 2013 .

[76]  M. El‐Kady,et al.  Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage , 2013, Nature Communications.

[77]  W. Tang,et al.  Transition Metal Oxide Work Functions: The Influence of Cation Oxidation State and Oxygen Vacancies , 2012 .

[78]  D. A. Brownson,et al.  Graphene electrochemistry: fundamental concepts through to prominent applications. , 2012, Chemical Society reviews.

[79]  Zhiyuan Zeng,et al.  Hollow core–shell nanostructure supercapacitor electrodes: gap matters , 2012 .

[80]  J. Glass,et al.  Effect of porosity variation on the electrochemical behavior of vertically aligned multi-walled carbon nanotubes. , 2012, Electrochemistry communications.

[81]  Kwang S. Kim,et al.  Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices , 2012 .

[82]  F. Fisher,et al.  Out-of-plane growth of CNTs on graphene for supercapacitor applications , 2012, Nanotechnology.

[83]  P. Ajayan,et al.  Ultrathin planar graphene supercapacitors. , 2011, Nano letters.

[84]  Hidetaka Konno,et al.  Carbon materials for electrochemical capacitors , 2010 .

[85]  Zhixiang Wei,et al.  Conducting Polyaniline Nanowire Arrays for High Performance Supercapacitors , 2010 .

[86]  K. Loh,et al.  Electrochemical Double-Layer Capacitance of MoS[sub 2] Nanowall Films , 2007 .

[87]  Chi-Chang Hu,et al.  Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. , 2006, Nano letters.

[88]  A. K. Tyagi,et al.  MnO2-Vertical graphene nanosheets composite electrodes for energy storage devices☆ , 2016 .

[89]  A. Hårsta,et al.  Atomic layer deposition of titanium dioxide nanostructures using carbon nanosheets as a template , 2009 .

[90]  G. Lu,et al.  3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. , 2008, Angewandte Chemie.

[91]  John R. Miller,et al.  Electrochemical Capacitors: Challenges and Opportunities for Real-World Applications , 2008 .

[92]  Cees Dekker,et al.  Individual single-walled carbon nanotubes as nanoelectrodes for electrochemistry. , 2005, Nano letters.