Tracking Multiple Visual Targets via Particle-Based Belief Propagation

Multiple-target tracking in video (MTTV) presents a technical challenge in video surveillance applications. In this paper, we formulate the MTTV problem using dynamic Markov network (DMN) techniques. Our model consists of three coupled Markov random fields: 1) a field for the joint state of the multitarget; 2) a binary random process for the existence of each individual target; and 3) a binary random process for the occlusion of each dual adjacent target. To make the inference tractable, we introduce two robust functions that eliminate the two binary processes. We then propose a novel belief propagation (BP) algorithm called particle-based BP and embed it into a Markov chain Monte Carlo approach to obtain the maximum a posteriori estimation in the DMN. With a stratified sampler, we incorporate the information obtained from a learned bottom-up detector (e.g., support-vector-machine-based classifier) and the motion model of the target into the message propagation. Other low-level visual cues such as motion and shape can be easily incorporated into our framework to obtain better tracking results. We have performed extensive experimental verification, and the results suggest that our method is comparable to the state-of-art multitarget tracking methods in all the cases we tested.

[1]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[2]  James J. Little,et al.  A Boosted Particle Filter: Multitarget Detection and Tracking , 2004, ECCV.

[3]  Patrick Pérez,et al.  Maintaining multimodality through mixture tracking , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[4]  P. Pérez,et al.  Tracking multiple objects with particle filtering , 2002 .

[5]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[6]  Jian-Xin Xu,et al.  On iterative learning from different tracking tasks in the presence of time-varying uncertainties , 2004, IEEE Trans. Syst. Man Cybern. Part B.

[7]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[8]  Ying Wu,et al.  Decentralized multiple target tracking using netted collaborative autonomous trackers , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[9]  Michael Isard,et al.  Nonparametric belief propagation , 2010, Commun. ACM.

[10]  Ying Wu,et al.  Collaborative tracking of multiple targets , 2004, CVPR 2004.

[11]  Andrew Calway,et al.  Tracking Many Objects Using Subordinated Condensation , 2002, BMVC.

[12]  Hai Tao,et al.  A Sampling Algorithm for Tracking Multiple Objects , 1999, Workshop on Vision Algorithms.

[13]  James J. Little,et al.  Robust Visual Tracking for Multiple Targets , 2006, ECCV.

[14]  Frank Dellaert,et al.  An MCMC-Based Particle Filter for Tracking Multiple Interacting Targets , 2004, ECCV.

[15]  Jun S. Liu,et al.  The Collapsed Gibbs Sampler in Bayesian Computations with Applications to a Gene Regulation Problem , 1994 .

[16]  Andrew Blake,et al.  A Probabilistic Exclusion Principle for Tracking Multiple Objects , 2000, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[17]  Baihua Li,et al.  Articulated pose identification with sparse point features , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[18]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[19]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[20]  Gang Hua,et al.  Multi-scale visual tracking by sequential belief propagation , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[21]  Ramakant Nevatia,et al.  Tracking multiple humans in crowded environment , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[22]  Michael J. Black,et al.  On the unification of line processes, outlier rejection, and robust statistics with applications in early vision , 1996, International Journal of Computer Vision.

[23]  Ingemar J. Cox,et al.  An Efficient Implementation of Reid's Multiple Hypothesis Tracking Algorithm and Its Evaluation for the Purpose of Visual Tracking , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Michael I. Mandel,et al.  Distributed Occlusion Reasoning for Tracking with Nonparametric Belief Propagation , 2004, NIPS.

[25]  Nello Cristianini,et al.  An introduction to Support Vector Machines , 2000 .

[26]  Nanning Zheng,et al.  An integrated Monte Carlo data association framework for multi-object tracking , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[27]  Michael Isard,et al.  PAMPAS: real-valued graphical models for computer vision , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[28]  Nanning Zheng,et al.  Sequential stratified sampling belief propagation for multiple targets tracking , 2005, Science in China Series F.

[29]  Michael I. Jordan,et al.  Loopy Belief Propagation for Approximate Inference: An Empirical Study , 1999, UAI.

[30]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[31]  Gregory D. Hager,et al.  Probabilistic Data Association Methods for Tracking Complex Visual Objects , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[33]  Michael Isard,et al.  BraMBLe: a Bayesian multiple-blob tracker , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[34]  Yaakov Bar-Shalom,et al.  Sonar tracking of multiple targets using joint probabilistic data association , 1983 .

[35]  Nanning Zheng,et al.  Tracking Targets Via Particle Based Belief Propagation , 2006, ACCV.

[36]  Nanning Zheng,et al.  Graphical Model based Cue Integration Strategy for Head Tracking , 2006, BMVC.

[37]  Yakov Bar-Shalom,et al.  Multitarget-Multisensor Tracking: Principles and Techniques , 1995 .