Mineralogical changes upon heating in the Millbillillie meteorite: Implications for paleointensity determination in Apollo samples

[1]  M. Zolensky,et al.  Mineralogy of Experimentally Heated Tagish Lake , 2016 .

[2]  N. Jordanova,et al.  Thermomagnetic Behavior of Magnetic Susceptibility—Heating Rate and Sample Size Effects , 2016, Front. Earth Sci..

[3]  Benjamin P. Weiss,et al.  The lunar dynamo , 2014, Science.

[4]  E. A. Lima,et al.  Decline of the lunar core dynamo , 2014 .

[5]  N. Petersen,et al.  Demise of the rapid-field-change hypothesis at Steens Mountain: The crucial role of continuous thermal demagnetization , 2014 .

[6]  B. Weiss,et al.  Controlled‐atmosphere thermal demagnetization and paleointensity analyses of extraterrestrial rocks , 2014 .

[7]  F. Lotgering ON THE FERRIMAGNETISM OF SOME SULPHIDES AND OXIDES , 2014 .

[8]  J. Head,et al.  Persistence and origin of the lunar core dynamo , 2013, Proceedings of the National Academy of Sciences.

[9]  J. Gee,et al.  Inferred time- and temperature-dependent cation ordering in natural titanomagnetites , 2012, Nature Communications.

[10]  D. Pechersky,et al.  Extraterrestrial magnetic minerals , 2012, Izvestiya, Physics of the Solid Earth.

[11]  E. A. Lima,et al.  Magnetic fidelity of lunar samples and implications for an ancient core dynamo , 2012 .

[12]  P. Rochette,et al.  Magnetic study of large Apollo samples: Possible evidence for an ancient centered dipolar field on the Moon , 2012 .

[13]  William S. Cassata,et al.  A Long-Lived Lunar Core Dynamo , 2012, Science.

[14]  D. J. Stevenson,et al.  A long-lived lunar dynamo driven by continuous mechanical stirring , 2011, Nature.

[15]  D. Dunlop Physical basis of the Thellier–Thellier and related paleointensity methods , 2011 .

[16]  M. Jeleńska,et al.  Thermally induced transformation of magnetic minerals in soil based on rock magnetic study and Mössbauer analysis , 2010 .

[17]  B. Weiss,et al.  Early Lunar Magnetism , 2007, Science.

[18]  C. Johnson,et al.  Lunar paleointensity measurements: Implications for lunar magnetic evolution , 2008 .

[19]  M. Norman,et al.  Identifying impact events within the lunar cataclysm from 40Ar–39Ar ages and compositions of Apollo 16 impact melt rocks , 2006 .

[20]  Hai-peng Wang,et al.  A review on the mineral chemistry of the non-stoichiometric iron sulphide, Fe1− x S (0 ≤  x  ≤ 0.125): polymorphs, phase relations and transitions, electronic and magnetic structures , 2005 .

[21]  N. Jordanova,et al.  Transformations of magnetic mineralogy in rocks revealed by difference of hysteresis loops measured after stepwise heating: theory and case studies , 2005 .

[22]  Y. Gallet,et al.  A new three-axis vibrating sample magnetometer for continuous high-temperature magnetization measurements: applications to paleo- and archeo-intensity determinations , 2004 .

[23]  Pierre Rochette,et al.  Toward a robust normalized magnetic paleointensity method applied to meteorites , 2004 .

[24]  A. Kontny,et al.  Pyrrhotite varieties from the 9.1 km deep borehole of the KTB project , 2000 .

[25]  J. Dobson,et al.  Multimodal investigation of thermally induced changes in magnetic fabric and magnetic mineralogy , 1998 .

[26]  Fan Li,et al.  Ordering, Incommensuration, and Phase Transitions in Pyrrhotite: Part II: A High-Temperature X-Ray Powder Diffraction and Thermomagnetic Study , 1996 .

[27]  H. Franzen,et al.  Phase transitions in near stoichiometric iron sulfide , 1996 .

[28]  L. Tauxe,et al.  Relative paleointensity in sediments: A Pseudo‐Thellier Approach , 1995 .

[29]  T. Aïfa Different styles of remagnetization in Devonian sediments from the north-western Sahara (Algeria) , 1993 .

[30]  S. Morden A magnetic study of the Millbillillie (eucrite) achondrite: Evidence for a dynamo‐type magnetising field , 1992 .

[31]  M. Dekkers Magnetic monitoring of pyrrhotite alteration during thermal demagnetization , 1990 .

[32]  D. Collinson Magnetic properties of the Olivenza meteorite—possible implications for its evolution and an early solar system magnetic field , 1987 .

[33]  S. Cisowski,et al.  Lunar paleointensities via the IRMs normalization method and the early magnetic history of the moon. [saturation remanence] , 1986 .

[34]  S. Runcorn,et al.  Further investigations into lunar palaeointensity determinations , 1985 .

[35]  D. Strangway,et al.  Magnetic paleointensity determination on lunar sample 62235 , 1983 .

[36]  J. Graham,et al.  New observations on natural pyrrhotites; Part III, Thermomagnetic experiments , 1980 .

[37]  D. Vaniman,et al.  Lunar highland melt rocks - Chemistry, petrology and silicate mineralogy , 1980 .

[38]  E. E. Larson Degradation of Lunar Basalts during Thermal Heating in and its Relation to Paleointensity Measurements , 1978 .

[39]  H. Soffel Pseudo-single-domain effects and single-domain multidomain transition in natural pyrrhotite deduced from domain structure observations , 1976 .

[40]  Subir K. Banerjee,et al.  Early lunar magnetism , 1976, Nature.

[41]  L. Taylor,et al.  Some complexities in the determination of lunar paleointensities , 1976 .

[42]  R. L. Reynolds,et al.  Microscopic and Thermomagnetic Analysis of Apollo 17 Breccia and Basalt: Feasibility of Obtaining Meaningful Paleointensities of the Lunar Magnetic Field , 1974 .

[43]  F. Heller,et al.  Determination of Palaeointensities of the Geomagnetic Field from Anhysteretic Remanent Magnetization Measurements , 1972, November 16.

[44]  E. J. Schwarz,et al.  Magnetic Phase Relations of Pyrrhotite , 1972 .

[45]  N. Morimoto,et al.  Phase relations and superstructures of pyrrhotite, Fe1−xS☆ , 1971 .

[46]  E. Thellier,et al.  Sur l'intensite du champ magnetique terrestre dans le passe historique et geologique , 1959 .

[47]  L. Néel Some theoretical aspects of rock-magnetism , 1955 .