Pyrosequencing the transcriptome of the greenhouse whitefly, Trialeurodes vaporariorum reveals multiple transcripts encoding insecticide targets and detoxifying enzymes

[1]  R. Nauen,et al.  Incidence and characterisation of resistance to neonicotinoid insecticides and pymetrozine in the greenhouse whitefly, Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae). , 2010, Pest management science.

[2]  J. Blande,et al.  Cross-resistance relationships between neonicotinoids and pymetrozine in Bemisia tabaci (Hemiptera: Aleyrodidae). , 2010, Pest management science.

[3]  S. Foster,et al.  Amplification of a Cytochrome P450 Gene Is Associated with Resistance to Neonicotinoid Insecticides in the Aphid Myzus persicae , 2010, PLoS genetics.

[4]  B. Roe,et al.  Comparative analysis of detoxification enzymes in Acyrthosiphon pisum and Myzus persicae , 2010, Insect molecular biology.

[5]  M. Berenbaum,et al.  Metabolic enzymes associated with xenobiotic and chemosensory responses in Nasonia vitripennis , 2010, Insect molecular biology.

[6]  R. ffrench-Constant,et al.  Pyrosequencing the Manduca sexta larval midgut transcriptome: messages for digestion, detoxification and defence , 2010, Insect molecular biology.

[7]  G. K. Davis,et al.  Genome Sequence of the Pea Aphid Acyrthosiphon pisum , 2010, PLoS biology.

[8]  Robert Edwards,et al.  Glutathione Transferases , 2010, The arabidopsis book.

[9]  Chuan-Xi Zhang,et al.  De novo characterization of a whitefly transcriptome and analysis of its gene expression during development , 2010, BMC Genomics.

[10]  Alexie Papanicolaou,et al.  Next generation transcriptomes for next generation genomes using est2assembly , 2009, BMC Bioinformatics.

[11]  D. Nelson The Cytochrome P450 Homepage , 2009, Human Genomics.

[12]  M. Marra,et al.  Applications of new sequencing technologies for transcriptome analysis. , 2009, Annual review of genomics and human genetics.

[13]  R. ffrench-Constant,et al.  Pyrosequencing of the midgut transcriptome of the poplar leaf beetle Chrysomela tremulae reveals new gene families in Coleoptera. , 2009, Insect biochemistry and molecular biology.

[14]  R. Nauen,et al.  Organophosphates' resistance in the B-biotype of Bemisia tabaci (Hemiptera: Aleyrodidae) is associated with a point mutation in an ace1-type acetylcholinesterase and overexpression of carboxylesterase. , 2008, Insect biochemistry and molecular biology.

[15]  R. Nauen,et al.  Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). , 2008, Insect biochemistry and molecular biology.

[16]  Mark L. Blaxter,et al.  ButterflyBase: a platform for lepidopteran genomics , 2007, Nucleic Acids Res..

[17]  Stefan Götz,et al.  Blast2GO: A Comprehensive Suite for Functional Analysis in Plant Genomics , 2007, International journal of plant genomics.

[18]  J. Hemingway,et al.  Genomic analysis of detoxification genes in the mosquito Aedes aegypti. , 2008, Insect biochemistry and molecular biology.

[19]  M. Nei,et al.  MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. , 2007, Molecular biology and evolution.

[20]  Lijie Sun,et al.  Resistance in the Post-Genomics Age , 2007 .

[21]  P. Usherwood,et al.  DDT, pyrethrins, pyrethroids and insect sodium channels , 2007, IUBMB life.

[22]  The Chinese Human Genome Sequencing Consortium Insights into social insects from the genome of the honeybee Apis mellifera , 2006, Nature.

[23]  Ying Wang,et al.  Insights into social insects from the genome of the honeybee Apis mellifera , 2006, Nature.

[24]  M. Berenbaum,et al.  A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee , 2006, Insect molecular biology.

[25]  Torulf Mollestad,et al.  Additional Gene Ontology structure for improved biological reasoning , 2006, Bioinform..

[26]  M. Ghanim,et al.  Whitefly (Bemisia tabaci) genome project: analysis of sequenced clones from egg, instar, and adult (viruliferous and non-viruliferous) cDNA libraries , 2006, BMC Genomics.

[27]  Gregory Butler,et al.  OrfPredictor: predicting protein-coding regions in EST-derived sequences , 2005, Nucleic Acids Res..

[28]  Zewen Liu,et al.  A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Hemingway,et al.  5.11 – Glutathione Transferases , 2005 .

[30]  R. Feyereisen,et al.  4.1 – Insect Cytochrome P450 , 2005 .

[31]  J. Oakeshott,et al.  Two major classes of target site insensitivity mutations confer resistance to organophosphate and carbamate insecticides , 2004 .

[32]  S. Lukyanov,et al.  Simple cDNA normalization using kamchatka crab duplex-specific nuclease. , 2004, Nucleic acids research.

[33]  Janet Hemingway,et al.  Evolution of Supergene Families Associated with Insecticide Resistance , 2002, Science.

[34]  Jian Wang,et al.  The Genome Sequence of the Malaria Mosquito Anopheles gambiae , 2002, Science.

[35]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[36]  R. ffrench-Constant,et al.  Cyclodiene insecticide resistance: from molecular to population genetics. , 2000, Annual review of entomology.

[37]  Benveniste,et al.  Cytochrome P450 , 1993, Handbook of Experimental Pharmacology.

[38]  Ernest Hodgson,et al.  Insect Cytochrome P450 , 1991 .