State of the art and challenges in mineral processing control

Abstract The objective of process control in the mineral industry is to optimise the recovery of the valuable minerals, while maintaining the quality of the concentrates delivered to the metal extraction plants. The paper presents a survey of the control approaches for ore size reduction and mineral separation processes. The present limitations of the measurement instrumentation are discussed, as well as the methods to upgrade the information delivered by the sensors. In practice, the overall economic optimisation goal must be hierarchically decomposed into simpler control problems. Model-based and AI methods are reviewed, mainly for grinding and flotation processes, and classified as mature, active or emerging.

[1]  Claude Bazin,et al.  Real-time material balance for flotation plants using a least-squares recursive algorithm , 1996 .

[2]  Gianni Schena,et al.  Identification of the distributed efficiency of a particle separation system , 2000 .

[3]  K. Najim,et al.  Long-range predictive control of a rougher flotation unit , 1994 .

[4]  Daniel Hodouin,et al.  Integrated simulation of grinding and flotation application to a lead-silver ore , 1999 .

[5]  Daniel Hodouin,et al.  Nonlinear Predictive Control of a Rougher Flotation Unit Using Local Models , 1998 .

[6]  Daniel Hodouin,et al.  Dynamic material-balance algorithms: Application to industrial flotation circuits , 1997 .

[7]  Heikki Hyötyniemi,et al.  Modeling of visual flotation froth data , 2000 .

[8]  F. Durão,et al.  Strategies for fuzzy control of a water/air column , 2000 .

[9]  R. Spring Minimum variance as a benchmark for feedback control , 1996 .

[10]  André Desbiens,et al.  Distributed control at the Kidd Creek grinding plant. Part II: Implementation , 1997 .

[11]  Mika Järvensivu,et al.  Integrated expert control system for grinding and flotation , 1993 .

[12]  Jose A. Romagnoli,et al.  Data Processing and Reconciliation for Chemical Process Operations , 1999 .

[13]  D. J. McKee,et al.  The relationship between fragmentation in mining and comminution circuit throughput , 1995 .

[14]  Daniel Hodouin,et al.  Constrained real-time optimization of a grinding circuit using steady-state linear programming supervisory control , 2002 .

[15]  F. Durao,et al.  A neural network controller of a flotation process , 1995 .

[16]  Daniel Hodouin,et al.  MODELLING AND CONTROL OF MINERAL PROCESSING PLANTS USING NEURAL NETWORKS , 1992 .

[17]  Sampsa Laine,et al.  On-line determination of ore type using cluster analysis and neural networks , 1995 .

[18]  Jules Thibault,et al.  Neural net-based softsensor for dynamic particle size estimation in grinding circuits , 1997 .

[19]  Daniel Hodouin,et al.  A survey of grinding circuit control methods: from decentralized PID controllers to multivariable predictive controllers , 2000 .

[20]  André Desbiens,et al.  Identification and Gain-Scheduled Control of a Pilot Flotation Column , 1998 .

[21]  Daniel Hodouin,et al.  Economic optimisation of a flotation plant through grinding circuit tuning , 2000 .

[22]  Daniel Hodouin,et al.  A recursive node imbalance method incorporating a model of flowrate dynamics for on-line material balance of complex flowsheets , 1995 .

[23]  W. Stange The Control of Mineral Processing Plants Using Neural Network Techniques , 1992 .

[24]  Chris Aldrich,et al.  The use of connectionist systems to reconcile inconsistent process data , 1994 .

[25]  Daniel Hodouin,et al.  Recursive bilmat algorithm: An on-line extension of data reconciliation techniques for steady-state bilinear material balance , 1994 .

[26]  Shankar Narasimhan,et al.  Data reconciliation & gross error detection: an intelligent use of process data , 1999 .

[27]  Chris Aldrich,et al.  Visualization of transformed multivariate data sets with autoassociative neural networks , 1998, Pattern Recognit. Lett..

[28]  C. M. Crowe,et al.  Data reconciliation — Progress and challenges , 1996 .

[29]  D. G. Hulbert Multivariable Control of Pulp Levels in Flotation Circuits , 1995 .

[30]  J. Macgregor,et al.  Monitoring and Diagnosing Process Control Performance: The Single-Loop Case , 1991, 1991 American Control Conference.

[31]  Claude Bazin,et al.  Distribution of reagents down a flotation bank to improve the recovery of coarse particles , 2001 .

[32]  Daniel Hodouin,et al.  Reconciliation of mineral processing data containing correlated measurement errors , 1998 .

[33]  M. Hou,et al.  Multivariate statistical analysis of mineral processing plant data , 1993 .

[34]  Aldo Cipriano,et al.  Assessment of expert fuzzy controllers for conventional flotation plants , 1999 .

[35]  Norbert H. Maerz,et al.  ONLINE FRAGMENTATION ANALYSIS FOR GRINDING AND CRUSHING CONTROL , 2000 .

[36]  Daniel Hodouin,et al.  Calculation of variance and covariance of sampling errors in complex mineral processing systems, using state–space dynamic models , 1998 .

[37]  André Desbiens,et al.  Distributed control at the Kidd Creek grinding plant. PartI : Control strategy design , 1997 .

[38]  R. del Villar,et al.  Automatic control of a laboratory flotation column , 1999 .

[39]  Daniel Hodouin,et al.  Data Reconciliation for Stationary Multi-Phase Multi-Stream Metallurgical Processes , 1998 .

[40]  J. A. Herbst,et al.  Video Sampling for Mine to Mill Performance Evaluation, Model Calibration and Simulation * , 2000 .

[41]  W. Valery,et al.  THE DEVELOPMENT OF A DYNAMIC MODEL FOR AUTOGENOUS AND SEMI-AUTOGENOUS GRINDING , 1995 .

[42]  Thomas Gustafsson,et al.  Modelling and control of a flotation process , 1999 .

[43]  Daniel Hodouin,et al.  Feedforward-feedback predictive control of a simulated flotation bank , 2000 .

[44]  Rob Morrison,et al.  Applying image analysis to process control - from blasting to flotation. , 2000 .

[45]  D. Sutherland,et al.  Mineral liberation: measurement, simulation and practical use in mineral processing: G. Barbery,Les Editions GB, Quebec, Canada, 1991. 351 pps. Price 125 $ CAN ISBN 2-9802322-0-3 , 1992 .

[46]  Kaddour Najim,et al.  Adaptive predictive control of a grinding circuit , 1994 .

[47]  Shama Ams,et al.  Current status and future trends in the automation of mineral and metal processing , 2001 .

[48]  Sampsa Laine,et al.  Ore Type based Expert Systems in Mineral Processing Plants , 1998 .

[49]  Michael H. Moys,et al.  Validation of the discrete element method (DEM) by comparing predicted load behaviour of a grinding mill with measured data , 2000 .

[50]  O. A. Bascur An interactive dynamic flotation model framework , 2000 .

[51]  Chris Aldrich,et al.  Comparison of different artificial neural nets for the detection and location of gross errors in process systems , 1995 .

[52]  Richard Lestage,et al.  Advanced Control of an Industrial Closed-Loop Grinding Circuit , 1998 .

[53]  A. E. Oblad,et al.  Cost reduction in grinding plants through process optimization and control , 1996 .

[54]  Daniel Hodouin,et al.  Use of a novel autoassociative neural network for nonlinear steady-state data reconciliation , 1997 .

[55]  M. Suichies,et al.  An implementation of generalized predictive control in a flotation plant , 1998 .

[56]  Andre Desbiens,et al.  Global Predictive Control: A Unified Control Structure for Decoupling Setpoint Tracking, Feedforward Compensation and Disturbance Rejection Dynamics , 2000 .