Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts

Purpose – A recent study confirmed that the particle size distribution of a metallic powder material has a major influence on the density of a part produced by selective laser melting (SLM). Although it is possible to get high density values with different powder types, the processing parameters have to be adjusted accordingly, affecting the process productivity. However, the particle size distribution does not only affect the density but also the surface quality and the mechanical properties of the parts. The purpose of this paper is to investigate the effect of three different powder granulations on the resulting part density, surface quality and mechanical properties of the materials produced.Design/methodology/approach – The scan surface quality and mechanical properties of three different particle size distributions and two layer thicknesses of 30 and 45 μm were compared. The scan velocities for the different powder types have been adjusted in order to guarantee a part density≥99.5 per cent.Findings ...

[1]  L. Froyen,et al.  Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting , 2004 .

[2]  Ignace Naert,et al.  Rapid manufacturing of dental prostheses by means of selective laser sintering/melting , 2005 .

[3]  F. Calignano,et al.  Influence of process parameters on surface roughness of aluminum parts produced by DMLS , 2012, The International Journal of Advanced Manufacturing Technology.

[4]  Claus Emmelmann,et al.  Investigation of Aging Processes of Ti-6Al-4 V Powder Material in Laser Melting , 2012 .

[5]  Jan T. Sehrt,et al.  Auswirkung des anisotropen Gefüges strahlgeschmolzener Bauteile auf mechanische Eigenschaftswerte , 2009 .

[6]  Manfred Zinn,et al.  Biodegradable Bicomponent Fibers from Renewable Sources: Melt‐Spinning of Poly(lactic acid) and Poly[(3‐hydroxybutyrate)‐co‐(3‐hydroxyvalerate)] , 2012 .

[7]  Randall M. German,et al.  Particle packing characteristics , 1989 .

[8]  A. Spierings,et al.  Comparison of density measurement techniques for additive manufactured metallic parts , 2011 .

[9]  Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties , 2012 .

[10]  M. Rombouts,et al.  Laser metal deposition of Inconel 625: Microstructure and mechanical properties , 2012 .

[11]  Rémy Glardon,et al.  Optimization of powder layer density in selective laser sintering , 1999 .

[12]  W. Martienssen,et al.  Springer handbook of condensed matter and materials data , 2005 .

[13]  D. E. Dimla,et al.  Design and optimisation of conformal cooling channels in injection moulding tools , 2005 .

[14]  R. Poprawe,et al.  Generative Fertigung von Bauteilen aus Werkzeugstahl X38CrMoV5-1 und Titan TiAl6V4 mit 'Selective Laser Melting' , 2003 .

[15]  Jean-Pierre Kruth,et al.  Improving Productivity Rate in SLM of Commercial Steel Powders , 2009 .

[16]  G. Levy,et al.  Comparison of density of stainless steel 316 L parts produced with selective laser melting using different powder grades , 2009 .

[17]  Fritz Klocke,et al.  Entwicklung des Selective Laser Melting (SLM) für Aluminiumwerkstoffe , 2004 .