Effect of inclination on saturation boiling of PF-5060 dielectric liquid on 80- and 137-μm thick copper micro-porous surfaces

abstract Investigated is the effect of inclination, from 0 (upward facing) to 180 (downward facing), on saturationnucleate boiling of degassed PF-5060 dielectric liquid on two Cu micro-porous surfaces measuring10 10 mm, and 80- and 197- m m thick. These surfaces, deposited by electrochemical processes on Cusubstrates of the same footprint area and 1.6 mm thick, are heated uniformly in the experiments. Thehigh volume porosityand morphology of the surfaces enhance nucleate boiling by increasing the bubblesnucleation sites density and the wetted surface area. The measured CHF values and those of themaximum nucleate boiling heat transfer coefficient, h MNB , are much higher than measured on plane Cuand decrease monotonically with increased surface inclination to their lowest values in the downwardfacing orientation (180 ). The 197- m m thick micro-porous surface gives the largest enhancements in CHFand h MNB . 2011 Elsevier Masson SAS. All rights reserved. 1. IntroductionThe potential of immersion nucleate boiling of dielectric liquidshas been recognized as an effective means for cooling high powercomputer chips or Dies with a surface average dissipation heat fluxup to 100 W/cm

[1]  S. M. You,et al.  Pool Boiling Heat Transfer From Plain and Microporous, Square Pin Finned Surfaces in Saturated FC-72 , 1999, Heat Transfer: Volume 4.

[2]  Yoon-Ho Kim,et al.  Pool boiling enhancement with surface treatments , 2008 .

[3]  P. Phelan An introduction to heat pipes , 1996 .

[4]  M. Toprak,et al.  Nature‐Inspired Boiling Enhancement by Novel Nanostructured Macroporous Surfaces , 2008 .

[5]  G. P. Peterson,et al.  An Introduction to Heat Pipes: Modeling, Testing, and Applications , 1994 .

[6]  R. Webb Odyssey of the Enhanced Boiling Surface , 2004 .

[7]  M Kazan,et al.  界面熱的コンダクタンスのための音響的不整合モデルと拡散不整合モデルの間の内挿:InN/GaN超格子への適用 , 2011 .

[8]  M. El-Genk,et al.  Subcooled Boiling of PF-5060 Dielectric Liquid on Microporous Surfaces , 2011 .

[9]  R. Webb Donald Q. Kern Lecture Award Paper: Odyssey of the Enhanced Boiling Surface , 2004 .

[10]  M. El-Genk Nucleate Boiling Enhancements on Porous Graphite and Microporous and Macro–Finned Copper Surfaces , 2012 .

[11]  J. L. Parker,et al.  Effect of Surface Orientation on Nucleate Boiling of FC-72 on Porous Graphite , 2006 .

[12]  M. El-Genk,et al.  Enhanced nucleate boiling on copper micro-porous surfaces , 2010 .

[13]  K. Kim,et al.  Pool boiling of saturated FC-72 on nano-porous surface , 2005 .

[14]  M. El-Genk,et al.  Saturation boiling of HFE-7100 from a copper surface, simulating a microelectronic chip , 2003 .

[15]  Jung-Yeul Jung,et al.  Effect of surface condition on boiling heat transfer from silicon chip with submicron-scale roughness , 2006 .

[16]  J. L. Parker,et al.  Enhanced boiling of HFE-7100 dielectric liquid on porous graphite , 2005 .

[17]  S. M. You,et al.  Heater Orientation Effects on Pool Boiling of Micro-Porous-Enhanced Surfaces in Saturated FC-72 , 1996 .

[18]  Sheng-Chih Lin,et al.  Cool Chips: Opportunities and Implications for Power and Thermal Management , 2008, IEEE Transactions on Electron Devices.

[19]  S. J. Kline,et al.  Describing Uncertainties in Single-Sample Experiments , 1953 .

[20]  J. L. Parker,et al.  Nucleate boiling of FC-72 and HFE-7100 on porous graphite at different orientations and liquid subcooling , 2008 .

[21]  T. Fisher,et al.  Effects of carbon nanotube arrays on nucleate pool boiling , 2007 .

[22]  I. Mudawar,et al.  Microelectronic Cooling by Enhanced Pool Boiling of a Dielectric Fluorocarbon Liquid , 1989 .

[23]  T. C. Cheng,et al.  Pool boiling heat transfer on artificial micro-cavity surfaces in dielectric fluid FC-72 , 2006 .

[24]  Joo Han Kim Enhancement Of Pool Boiling Heat Transfer Using Thermally-conductive Microporous Coating Techniques , 2006 .

[25]  M. El-Genk COMBINED EFFECTS OF SUBCOOLING AND SURFACE ORIENTATION ON POOL BOILING OF HFE-7100 FROM A SIMULATED ELECTRONIC CHIP , 2003 .

[26]  S. Launay,et al.  Hybrid micro-nano structured thermal interfaces for pool boiling heat transfer enhancement , 2006, Microelectron. J..