Deep neural network potential for simulating hydrogen blistering in tungsten

[1]  G. Lu,et al.  Neon-concentration dependent retarding effect on the recrystallization of irradiated tungsten: experimental analysis and molecular dynamics simulation , 2022, Journal of Materials Science & Technology.

[2]  W. Setyawan,et al.  Accurate Fe–He machine learning potential for studying He effects in BCC-Fe , 2022, Journal of Nuclear Materials.

[3]  X. Kong,et al.  Implantation and desorption of H isotopes in W revisited by object kinetic Monte Carlo simulation , 2022, Journal of Nuclear Materials.

[4]  Linfeng Zhang,et al.  Specialising neural network potentials for accurate properties and application to the mechanical response of titanium , 2021, npj Computational Materials.

[5]  Linfeng Zhang,et al.  A tungsten deep neural-network potential for simulating mechanical property degradation under fusion service environment , 2021, Nuclear Fusion.

[6]  A. Hartmaier,et al.  Hydrogen Embrittlement at Cleavage Planes and Grain Boundaries in Bcc Iron—Revisiting the First-Principles Cohesive Zone Model , 2020, Materials.

[7]  G. Lu,et al.  Migration energy barriers and diffusion anisotropy of point defects on tungsten surfaces , 2020 .

[8]  Wei Liu,et al.  Nucleation mechanism of intra-granular blisters in tungsten exposed to hydrogen plasma , 2020 .

[9]  Linfeng Zhang,et al.  Accurate Deep Potential model for the Al–Cu–Mg alloy in the full concentration space* , 2020, 2008.11795.

[10]  X. Wang,et al.  Growth mechanism of subsurface hydrogen cavities in tungsten exposed to low-energy high-flux hydrogen plasma , 2020 .

[11]  X. Kong,et al.  Hydrogen Clustering in Bcc Metals: Atomic Origin and Strong Stress Anisotropy , 2020, Acta Materialia.

[12]  E Weinan,et al.  DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models , 2019, Comput. Phys. Commun..

[13]  Xuesu Xiao,et al.  Irradiation hardening induced by blistering in tungsten due to low-energy high flux hydrogen plasma exposure , 2019, Journal of Nuclear Materials.

[14]  Q. Hou,et al.  Molecular dynamics studies of low-energy atomic hydrogen cumulative bombardment on tungsten surface , 2019, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms.

[15]  B. Wirth,et al.  First-principles study of hydrogen diffusion and self-clustering below tungsten surfaces , 2019, Journal of Applied Physics.

[16]  Linfeng Zhang,et al.  Deep learning inter-atomic potential model for accurate irradiation damage simulations , 2019, Applied Physics Letters.

[17]  Xiaona Zhang,et al.  〈001〉 edge dislocation nucleation mechanism of surface blistering in tungsten exposed to deuterium plasma , 2018, Nuclear Fusion.

[18]  S. Krasheninnikov,et al.  Stress-induced hydrogen self-trapping in tungsten , 2018, Nuclear Fusion.

[19]  T. Urbańczyk,et al.  Neural networks and determination of diatomic molecule interatomic potential of cadmium dimer. , 2018, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[20]  C. S. Liu,et al.  Hydrogen bubble nucleation by self-clustering: density functional theory and statistical model studies using tungsten as a model system , 2017, Nuclear Fusion.

[21]  E Weinan,et al.  DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics , 2017, Comput. Phys. Commun..

[22]  Wei Liu,et al.  Dislocation core structures of tungsten with dilute solute hydrogen , 2017 .

[23]  R. Harrison,et al.  Structural defect accumulation in tungsten and tungsten-5wt.% tantalum under incremental proton damage , 2017 .

[24]  B. Unterberg,et al.  Microstructure and nano-hardness of single crystal tungsten exposed to high flux deuterium plasma , 2017 .

[25]  G. Temmerman,et al.  Strong sub-surface plastic deformation induced by high flux plasma in tungsten , 2017 .

[26]  M. Hernández-Mayoral,et al.  Sub-surface microstructure of single and polycrystalline tungsten after high flux plasma exposure studied by TEM , 2017 .

[27]  Klaus-Robert Müller,et al.  Machine learning of accurate energy-conserving molecular force fields , 2016, Science Advances.

[28]  T. Ahlgren,et al.  Concentration dependent hydrogen diffusion in tungsten , 2016 .

[29]  S. Ryabtsev,et al.  Deuterium thermal desorption from vacancy clusters in tungsten , 2016 .

[30]  S. Ryabtsev,et al.  Experimental determination of the deuterium binding energy with vacancies in tungsten , 2016 .

[31]  Wei Liu,et al.  Mechanism for orientation dependence of blisters on W surface exposed to D plasma at low temperature , 2016 .

[32]  Nongnuch Artrith,et al.  An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2 , 2016 .

[33]  G. Bonny,et al.  Interaction of hydrogen with dislocations in tungsten: An atomistic study , 2015 .

[34]  Y. Ferro,et al.  Hydrogen diffusion and vacancies formation in tungsten: Density Functional Theory calculations and statistical models , 2015 .

[35]  G. Bonny,et al.  Nucleation and growth of hydrogen bubbles on dislocations in tungsten under high flux low energy plasma exposure , 2015 .

[36]  G. Oost,et al.  Effect of plastic deformation on deuterium retention and release in tungsten , 2015 .

[37]  Tiefeng Wu,et al.  Hydrogen diffusion in tungsten: A molecular dynamics study , 2014 .

[38]  G. Bonny,et al.  On the binding of nanometric hydrogen–helium clusters in tungsten , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[39]  Christian Trott,et al.  Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials , 2014, J. Comput. Phys..

[40]  Y. Zayachuk,et al.  Dislocations mediate hydrogen retention in tungsten , 2014 .

[41]  Alireza Bahramian,et al.  Study on growth rate of TiO2 nanostructured thin films: simulation by molecular dynamics approach and modeling by artificial neural network , 2013 .

[42]  Lisa Ventelon,et al.  Interatomic potentials for modelling radiation defects and dislocations in tungsten , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[43]  F. Gou,et al.  Molecular dynamics study of the effect of hydrogen on the mechanical properties of tungsten , 2013 .

[44]  B. Wirth,et al.  Molecular dynamics simulation of the effect of sub-surface helium bubbles on hydrogen retention in tungsten , 2013 .

[45]  J. Keinonen,et al.  Simulation of irradiation induced deuterium trapping in tungsten , 2012 .

[46]  T. Ahlgren,et al.  Diffusion of hydrogen in bcc tungsten studied with first principle calculations , 2010 .

[47]  G. Lu,et al.  Structure, stability and diffusion of hydrogen in tungsten: A first-principles study , 2009 .

[48]  Charlotte Becquart,et al.  A density functional theory assessment of the clustering behaviour of He and H in tungsten , 2009 .

[49]  J. Roth,et al.  Pre-implantation and pre-annealing effects on deuterium retention in tungsten , 2008 .

[50]  C. Domain,et al.  Ab initio calculations about intrinsic point defects and He in W , 2007 .

[51]  Kai Nordlund,et al.  Analytical interatomic potential for modeling nonequilibrium processes in the W–C–H system , 2005 .

[52]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[53]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[54]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[55]  V. Gavriljuk,et al.  Hydrogen in Engineering Metallic Materials: From Atomic-Level Interactions to Mechanical Properties , 2022 .

[56]  M. Balden,et al.  Deuterium supersaturation in low-energy plasma-loaded tungsten surfaces , 2016 .

[57]  G. Lu,et al.  Modified analytical interatomic potential for a W–H system with defects , 2011 .

[58]  A. Stukowski Modelling and Simulation in Materials Science and Engineering Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool , 2009 .

[59]  R. Frauenfelder Solution and Diffusion of Hydrogen in Tungsten , 1969 .