Spike–wave discharges in adult Sprague–Dawley rats and their implications for animal models of temporal lobe epilepsy

[1]  Asla Pitkänen,et al.  MRI biomarkers for post-traumatic epileptogenesis. , 2013, Journal of neurotrauma.

[2]  Lauren C Harte-Hargrove,et al.  Testosterone Depletion in Adult Male Rats Increases Mossy Fiber Transmission, LTP, and Sprouting in Area CA3 of Hippocampus , 2013, The Journal of Neuroscience.

[3]  Massimo Avoli,et al.  A brief history on the oscillating roles of thalamus and cortex in absence seizures , 2012, Epilepsia.

[4]  J. Sackellares,et al.  Effects of age and cortical infarction on EEG dynamic changes associated with spike wave discharges in F344 rats , 2011, Experimental Neurology.

[5]  E. Bertram,et al.  Excitatory amplification through divergent–convergent circuits: The role of the midline thalamus in limbic seizures , 2011, Neurobiology of Disease.

[6]  J. Ojemann,et al.  Impact of injury location and severity on posttraumatic epilepsy in the rat: role of frontal neocortex. , 2011, Cerebral cortex.

[7]  E. Bertram,et al.  Increased GABAergic inhibition in the midline thalamus affects signaling and seizure spread in the hippocampus–prefrontal cortex pathway , 2011, Epilepsia.

[8]  A. Coenen,et al.  Endogenous rhythm of absence epilepsy: Relationship with general motor activity and sleep–wake states , 2011, Epilepsy Research.

[9]  Mark A. Kramer,et al.  Cortical Networks Produce Three Distinct 7–12 Hz Rhythms during Single Sensory Responses in the Awake Rat , 2010, The Journal of Neuroscience.

[10]  G. van Luijtelaar,et al.  Spike–wave discharges are necessary for the expression of behavioral depression‐like symptoms , 2010, Epilepsia.

[11]  H. Scharfman,et al.  A rat model of epilepsy in women: a tool to study physiological interactions between endocrine systems and seizures. , 2009, Endocrinology.

[12]  David M. Sloan,et al.  Changes in midline thalamic recruiting responses in the prefrontal cortex of the rat during the development of chronic limbic seizures , 2009, Epilepsia.

[13]  P. Pardalos,et al.  Absence seizures as resetting mechanisms of brain dynamics , 2008, Cybernetics and systems analysis.

[14]  J. Mohawk,et al.  Circadian dependence of corticosterone release to light exposure in the rat , 2007, Physiology & Behavior.

[15]  John R. Huguenard,et al.  Thalamic synchrony and dynamic regulation of global forebrain oscillations , 2007, Trends in Neurosciences.

[16]  M. Hasselmo The role of acetylcholine in learning and memory , 2006, Current Opinion in Neurobiology.

[17]  J. Aronowski,et al.  Long-term video-EEG recordings following transient unilateral middle cerebral and common carotid artery occlusion in Long–Evans rats , 2006, Experimental Neurology.

[18]  D. Long,et al.  Models of Seizures and Epilepsy , 2006 .

[19]  H. Blumenfeld Cellular and Network Mechanisms of Spike‐Wave Seizures , 2005, Epilepsia.

[20]  U. Schridde,et al.  The role of the environment on the development of spike-wave discharges in two strains of rats , 2005, Physiology & Behavior.

[21]  C. Stafstrom Neurons Do the Wave (and the Spike!) during Neocortical Seizures , 2005, Epilepsy currents.

[22]  John W. Miller,et al.  Progression from frontal-parietal to mesial-temporal epilepsy after fluid percussion injury in the rat. , 2004, Brain : a journal of neurology.

[23]  Kevin M Kelly,et al.  Spike–Wave Discharges: Absence or Not, a Common Finding in Common Laboratory Rats , 2004, Epilepsy currents.

[24]  John W. Miller,et al.  Post-traumatic epilepsy following fluid percussion injury in the rat. , 2004, Brain : a journal of neurology.

[25]  U. Schridde,et al.  The influence of strain and housing on two types of spike‐wave discharges in rats , 2004, Genes, brain, and behavior.

[26]  E. van Luijtelaar,et al.  Genetic Animal Models for Absence Epilepsy: A Review of the WAG/Rij Strain of Rats , 2003, Behavior genetics.

[27]  K. Kelly,et al.  Electrobehavioral characteristics of epileptic rats following photothrombotic brain infarction , 2003, Epilepsy Research.

[28]  Miguel A L Nicolelis,et al.  Behavioral detection of tactile stimuli during 7–12 Hz cortical oscillations in awake rats , 2003, Nature Neuroscience.

[29]  A. Pitkänen,et al.  Expression and activation of caspase 3 following status epilepticus in the rat , 2003, The European journal of neuroscience.

[30]  A. Coenen,et al.  Ictal stimulus processing during spike-wave discharges in genetic epileptic rats , 2003, Behavioural Brain Research.

[31]  Miguel A L Nicolelis,et al.  Dynamic shifting in thalamocortical processing during different behavioural states† , 2002, Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences.

[32]  Karen L. Smith,et al.  Structural and functional asymmetry in the normal and epileptic rat dentate gyrus , 2002, The Journal of comparative neurology.

[33]  V. Crunelli,et al.  Childhood absence epilepsy: Genes, channels, neurons and networks , 2002, Nature Reviews Neuroscience.

[34]  Erika E. Fanselow,et al.  Thalamic bursting in rats during different awake behavioral states , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[35]  J. Kapur,et al.  Photothrombotic brain infarction results in seizure activity in aging Fischer 344 and Sprague Dawley rats , 2001, Epilepsy Research.

[36]  A. Pitkänen,et al.  Status Epilepticus Causes Necrotic Damage in the Mediodorsal Nucleus of the Thalamus in Immature Rats , 2001, The Journal of Neuroscience.

[37]  C. McKerlie,et al.  A model of atypical absence seizures: EEG, pharmacology, and developmental characterization , 2001 .

[38]  H. Scharfman,et al.  Granule-Like Neurons at the Hilar/CA3 Border after Status Epilepticus and Their Synchrony with Area CA3 Pyramidal Cells: Functional Implications of Seizure-Induced Neurogenesis , 2000, The Journal of Neuroscience.

[39]  D. Janz,et al.  The Idiopathic Generalized Epilepsies of Adolescence with Childhood and Juvenile Age of Onset , 1997, Epilepsia.

[40]  Douglas A. Coulter,et al.  Anticonvulsant drug effects on spontaneous thalamocortical rhythms in vitro: Ethosuximide, trimethadione, and dimethadione , 1996, Epilepsy Research.

[41]  E. Niedermeyer,et al.  Primary (Idiopathic) Generalized Epilepsy and Underlying Mechanisms , 1996, Clinical EEG.

[42]  G. Buzsáki,et al.  Genetic threshold hypothesis of neocortical spike-and-wave discharges in the rat: an animal model of petit mal epilepsy. , 1995, American journal of medical genetics.

[43]  A. Kandel,et al.  Spike-and-wave epilepsy in rats: Sex differences and inheritance of physiological traits , 1995, Neuroscience.

[44]  G. Buzsáki,et al.  Hippocampal theta activity following selective lesion of the septal cholinergic systeM , 1994, Neuroscience.

[45]  D. Prince,et al.  Intrathalamic rhythmicity studied in vitro: nominal T-current modulation causes robust antioscillatory effects , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  R J Porter,et al.  The Absence Epilepsies , 1993, Epilepsia.

[47]  M. Vergnes,et al.  Cerebral energy metabolism in rats with genetic absence epilepsy is not correlated with the pharmacological increase or suppression of spike-wave discharges , 1993, Brain Research.

[48]  J O Willoughby,et al.  Nonconvulsive electrocorticographic paroxysms (absence epilepsy) in rat strains. , 1992, Laboratory animal science.

[49]  B. H. Bland,et al.  The extrinsic modulation of hippocampal theta depends on the coactivation of cholinergic and GABA-ergic medial septal inputs , 1992, Neuroscience & Biobehavioral Reviews.

[50]  K. Dakshinamurti,et al.  Seizure Activity in Pyridoxine‐Deficient Adult Rats , 1992, Epilepsia.

[51]  G. Buzsáki,et al.  Spike-and-wave neocortical patterns in rats: Genetic and aminergic control , 1990, Neuroscience.

[52]  A. Coenen,et al.  Spontaneous occurrence of spike-wave discharges in five inbred strains of rats , 1990, Physiology & Behavior.

[53]  G. Buzsáki Two-stage model of memory trace formation: A role for “noisy” brain states , 1989, Neuroscience.

[54]  A. Zouhar,et al.  Motor and Electrocorticographic Epileptic Activity Induced by Bicuculline in Developing Rats , 1989, Epilepsia.

[55]  D. Prince,et al.  Specific petit mal anticonvulsants reduce calcium currents in thalamic neurons , 1989, Neuroscience Letters.

[56]  T. Serikawa,et al.  Effects of Antiepileptic Drugs on Absence‐Like and Tonic Seizures in the Spontaneously Epileptic Rat, a Double Mutant Rat , 1988, Epilepsia.

[57]  G. Buzsáki,et al.  Electric activity in the neocortex of freely moving young and aged rats , 1988, Neuroscience.

[58]  A. Depaulis,et al.  Spontaneous spike and wave discharges in thalamus and cortex in a rat model of genetic petit mal-like seizures , 1987, Experimental Neurology.

[59]  G. Buzsáki Hippocampal sharp waves: Their origin and significance , 1986, Brain Research.

[60]  A. Coenen,et al.  Two types of electrocortical paroxysms in an inbred strain of rats , 1986, Neuroscience Letters.

[61]  L. Kellényi,et al.  Laminar distribution of hippocampal rhythmic slow activity (RSA) in the behaving rat: Current-source density analysis, effects of urethane and atropine , 1986, Brain Research.

[62]  B. Komisaruk,et al.  Neural substrates of two different rhythmical vibrissal movements in the rat , 1984, Neuroscience.

[63]  N. Hagino,et al.  Prevention of continuous light-induced anovulation in rats by early exposure to continuous light. , 1983, Biology of reproduction.

[64]  S. Schwartz Effects of constant bright illumination on reproductive processes in the female rat , 1982, Neuroscience & Biobehavioral Reviews.

[65]  G. Fink,et al.  Effects of short-term constant light on the proestrous luteinizing hormone surge and pituitary responsiveness in the female rat. , 1981, Neuroendocrinology.

[66]  H. W. Shirer,et al.  Evidence for a photoperiod-sensitive pacemaker for estrous cycle of the rat. , 1981, The American journal of physiology.

[67]  S. A. Gilmore,et al.  Spontaneous generalized spike-wave discharges in the electrocorticograms of albino rats , 1980, Brain Research.

[68]  Barry R. Komisaruk,et al.  Synchrony among rhythmical facial tremor, neocortical ‘ALPHA’ waves, and thalamic non-sensory neuronal bursts in intact awake rats , 1980, Brain Research.

[69]  H. Teitelbaum,et al.  Behaviorally evoked hippocampal theta waves: a cholinergic response. , 1975, Science.

[70]  R. Julien,et al.  The effects of antiepileptic drugs on estrogen-induced electrographic spike-wave discharge. , 1975, The Journal of pharmacology and experimental therapeutics.

[71]  R. Racine,et al.  Modification of seizure activity by electrical stimulation. II. Motor seizure. , 1972, Electroencephalography and clinical neurophysiology.

[72]  Fu-Zen Shaw,et al.  7-12 Hz high-voltage rhythmic spike discharges in rats evaluated by antiepileptic drugs and flicker stimulation. , 2007, Journal of neurophysiology.

[73]  M. Steriade Neuronal substrates of spike-wave seizures and hypsarrhythmia in corticothalamic systems. , 2006, Advances in neurology.

[74]  Fu-Zen Shaw,et al.  Is spontaneous high-voltage rhythmic spike discharge in Long Evans rats an absence-like seizure activity? , 2004, Journal of neurophysiology.

[75]  T. Sejnowski,et al.  Thalamic and thalamocortical mechanisms underlying 3 Hz spike-and-wave discharges. , 1999, Progress in brain research.

[76]  A. Depaulis,et al.  Genetic absence epilepsy in rats from Strasbourg--a review. , 1992, Journal of neural transmission. Supplementum.

[77]  H. Kleinlogel Spontaneous EEG paroxysms in the rat: effects of psychotropic and alpha-adrenergic agents. , 1985, Neuropsychobiology.

[78]  K. Shirama Induction of persistent estrus by constant light: effects of neonatal constant light and Harderian gland function. , 1978, Neuroendocrinology.

[79]  R. Racine Modification of seizure activity by electrical stimulation: cortical areas. , 1975, Electroencephalography and clinical neurophysiology.