Exact solution of an integrable non-equilibrium particle system

We consider the boundary-driven interacting particle systems introduced in [FGK20a] related to the open non-compact Heisenberg model in one dimension. We show that a finite chain of N sites connected at its ends to two reservoirs can be solved exactly, i.e. the non-equilibrium steadystate has a closed-form expression for each N . The solution relies on probabilistic arguments and techniques inspired by integrable systems. It is obtained in two steps: i) the introduction of a dual absorbing process reducing the problem to a finite number of particles; ii) the solution of the dual dynamics exploiting a symmetry obtained from the Quantum Inverse Scattering Method. The exact solution allows to prove by a direct computation that, in the thermodynamic limit, the system approaches local equilibrium. A by-product of the solution is the algebraic construction of a direct mapping (a conjugation) between the generator of the non-equilibrium process and the generator of the associated reversible equilibrium process.

[1]  Schütz,et al.  Application of operator algebras to stochastic dynamics and the Heisenberg chain. , 1995, Physical review letters.

[2]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[3]  H. Spohn,et al.  One-dimensional Kardar-Parisi-Zhang equation: an exact solution and its universality. , 2010, Physical review letters.

[4]  F. Essler,et al.  Exact spectral gaps of the asymmetric exclusion process with open boundaries , 2006, cond-mat/0609645.

[5]  R. Frassek Eigenstates of triangularisable open XXX spin chains and closed-form solutions for the steady state of the open SSEP , 2019, Journal of Statistical Mechanics: Theory and Experiment.

[6]  B. Derrida,et al.  Exact solution of a 1d asymmetric exclusion model using a matrix formulation , 1993 .

[7]  F. Redig,et al.  Orthogonal polynomial duality of boundary driven particle systems and non-equilibrium correlations , 2020, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[8]  The Complete One-Loop Dilatation Operator of N=4 Super Yang-Mills Theory , 2003, hep-th/0307015.

[9]  B. Derrida,et al.  of Statistical Mechanics : Theory and Experiment Non-equilibrium steady states : fluctuations and large deviations of the density and of the current , 2007 .

[10]  A. Masi,et al.  Mathematical Methods for Hydrodynamic Limits , 1991 .

[11]  A. Povolotsky On the integrability of zero-range chipping models with factorized steady states , 2013, 1308.3250.

[12]  B. Derrida,et al.  Free energy functional for nonequilibrium systems: an exactly solvable case. , 2001, Physical review letters.

[13]  Frank Redig,et al.  Consistent particle systems and duality , 2021, Electronic Journal of Probability.

[14]  The non-compact XXZ spin chain as stochastic particle process , 2019, Journal of Physics A: Mathematical and Theoretical.

[15]  The $q$-Hahn asymmetric exclusion process , 2015, 1501.03445.

[16]  E. Sklyanin Boundary conditions for integrable quantum systems , 1988 .

[17]  G. Korchemsky,et al.  High energy QCD as a completely integrable model , 1995 .

[18]  P. Ferrari,et al.  A remark on the hydrodynamics of the zero-range processes , 1984 .

[19]  Vivien Lecomte,et al.  Mapping out-of-equilibrium into equilibrium in one-dimensional transport models , 2008, 0809.0709.

[20]  Steady State Thermodynamics , 2004, cond-mat/0411052.

[21]  E. R. Speer,et al.  Entropy of Open Lattice Systems , 2007, 0704.3742.

[22]  How algebraic Bethe ansatz works for integrable model , 1996, hep-th/9605187.

[23]  Baxter's Q-operator for the homogeneous XXX spin chain , 1999, solv-int/9902015.

[24]  THE KARDAR-PARISI-ZHANG,et al.  The Kardar-Parisi-Zhang Equation and Universality Class , 2011 .

[25]  A. Povolotsky Untangling of Trajectories and Integrable Systems of Interacting Particles: Exact Results and Universal Laws , 2021, Physics of Particles and Nuclei.

[26]  H. Primakoff,et al.  Field dependence of the intrinsic domain magnetization of a ferromagnet , 1940 .

[27]  Michael E. Hoffman,et al.  Zeros of the digamma function and its Barnes G-function analogue , 2017 .

[28]  J. Cardy,et al.  QUANTUM INVERSE SCATTERING METHOD AND CORRELATION FUNCTIONS , 1995 .

[29]  S.E.Derkachov Factorization of the R-matrix.I , 2005, math/0503396.

[30]  L. Lipatov Asymptotic behavior of multicolor QCD at high energies in connection with exactly solvable spin models , 1993 .

[31]  A. Borodin,et al.  Integrable probability: From representation theory to Macdonald processes , 2013, 1310.8007.

[32]  C. Giardinà,et al.  Duality for Stochastic Models of Transport , 2012, 1212.3154.

[33]  Zero-Range Process with Open Boundaries , 2004, cond-mat/0412129.

[34]  G. Ribeiro,et al.  Bethe ansatz for the XXX-S chain with non-diagonal open boundaries , 2004, nlin/0411038.

[35]  J. Kurchan,et al.  Non-compact Quantum Spin Chains as Integrable Stochastic Particle Processes , 2019, Journal of Statistical Physics.

[36]  Reaction - diffusion processes, critical dynamics and quantum chains , 1993, hep-th/9302112.

[37]  E. Ragoucy,et al.  Integrable approach to simple exclusion processes with boundaries. Review and progress , 2014, 1408.5357.

[38]  Stefan Grosskinsky Warwick,et al.  Interacting Particle Systems , 2016 .

[39]  Carlo Marchioro,et al.  Heat flow in an exactly solvable model , 1982 .

[40]  A Note on Fick’s Law with Phase Transitions , 2018, Journal of Statistical Physics.

[41]  C. Landim,et al.  Macroscopic fluctuation theory , 2014, 1404.6466.