Investigating protein-coding sequence evolution with probabilistic codon substitution models.

This review is motivated by the true explosion in the number of recent studies both developing and ameliorating probabilistic models of codon evolution. Traditionally parametric, the first codon models focused on estimating the effects of selective pressure on the protein via an explicit parameter in the maximum likelihood framework. Likelihood ratio tests of nested codon models armed the biologists with powerful tools, which provided unambiguous evidence for positive selection in real data. This, in turn, triggered a new wave of methodological developments. The new generation of models views the codon evolution process in a more sophisticated way, relaxing several mathematical assumptions. These models make a greater use of physicochemical amino acid properties, genetic code machinery, and the large amounts of data from the public domain. The overview of the most recent advances on modeling codon evolution is presented here, and a wide range of their applications to real data is discussed. On the downside, availability of a large variety of models, each accounting for various biological factors, increases the margin for misinterpretation; the biological meaning of certain parameters may vary among models, and model selection procedures also deserve greater attention. Solid understanding of the modeling assumptions and their applicability is essential for successful statistical data analysis.

[1]  Nick Goldman,et al.  A new criterion and method for amino acid classification. , 2004, Journal of theoretical biology.

[2]  H. Philippe,et al.  Computing Bayes factors using thermodynamic integration. , 2006, Systematic biology.

[3]  Ari Löytynoja,et al.  An algorithm for progressive multiple alignment of sequences with insertions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  B. Rannala,et al.  Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference , 1996, Journal of Molecular Evolution.

[5]  Simon Whelan,et al.  Estimating the Frequency of Events That Cause Multiple-Nucleotide Changes , 2004, Genetics.

[6]  Nick Goldman,et al.  Variation in evolutionary processes at different codon positions. , 2006, Molecular biology and evolution.

[7]  P. Lemey,et al.  Molecular Footprint of Drug-Selective Pressure in a Human Immunodeficiency Virus Transmission Chain , 2005, Journal of Virology.

[8]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[9]  G. McVean,et al.  Inferring parameters of mutation, selection and demography from patterns of synonymous site evolution in Drosophila. , 2001, Genetics.

[10]  Wasserman,et al.  Bayesian Model Selection and Model Averaging. , 2000, Journal of mathematical psychology.

[11]  W. Li,et al.  Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. , 1995, Molecular biology and evolution.

[12]  A. Komar SNPs, Silent But Not Invisible , 2007, Science.

[13]  Ziheng Yang Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods , 1994, Journal of Molecular Evolution.

[14]  R A Goldstein,et al.  Mutation matrices and physical‐chemical properties: Correlations and implications , 1997, Proteins.

[15]  N. Goldman,et al.  A codon-based model of nucleotide substitution for protein-coding DNA sequences. , 1994, Molecular biology and evolution.

[16]  S. Muse,et al.  Site-to-site variation of synonymous substitution rates. , 2005, Molecular biology and evolution.

[17]  R. Nielsen,et al.  Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. , 2005, Molecular biology and evolution.

[18]  B. Hall Comparison of the accuracies of several phylogenetic methods using protein and DNA sequences. , 2005, Molecular biology and evolution.

[19]  Rasmus Nielsen,et al.  Exploring Variation in the dN/dS Ratio Among Sites and Lineages Using Mutational Mappings: Applications to the Influenza Virus , 2007, Journal of Molecular Evolution.

[20]  Neuroendocrine immunity in patients with Alzheimer's disease: toward translational epigenetics , 2007, Bioinformation.

[21]  David R. Cox,et al.  The Theory of Stochastic Processes , 1967, The Mathematical Gazette.

[22]  M. Kimura,et al.  On the probability of fixation of mutant genes in a population. , 1962, Genetics.

[23]  A. Lemmon,et al.  The metapopulation genetic algorithm: An efficient solution for the problem of large phylogeny estimation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[24]  N. Sugiura Further analysts of the data by akaike' s information criterion and the finite corrections , 1978 .

[25]  Gavin A Huttley,et al.  Modeling the impact of DNA methylation on the evolution of BRCA1 in mammals. , 2004, Molecular biology and evolution.

[26]  S. Ho,et al.  Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.

[27]  K. Crandall,et al.  Selecting the best-fit model of nucleotide substitution. , 2001, Systematic biology.

[28]  Hirohisa Kishino,et al.  Population genetics without intraspecific data. , 2007, Molecular biology and evolution.

[29]  Maria Anisimova,et al.  Multiple hypothesis testing to detect lineages under positive selection that affects only a few sites. , 2007, Molecular biology and evolution.

[30]  Daniel J. Wilson,et al.  Estimating Diversifying Selection and Functional Constraint in the Presence of Recombination , 2006, Genetics.

[31]  Sergei L. Kosakovsky Pond,et al.  Datamonkey: rapid detection of selective pressure on individual sites of codon alignments , 2005, Bioinform..

[32]  R. Nielsen,et al.  Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. , 2003, Genetics.

[33]  Z. Yang,et al.  Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. , 1993, Molecular biology and evolution.

[34]  Ziheng Yang Estimating the pattern of nucleotide substitution , 1994, Journal of Molecular Evolution.

[35]  R. Grantham Amino Acid Difference Formula to Help Explain Protein Evolution , 1974, Science.

[36]  K. Shokat,et al.  Human Catechol-O-Methyltransferase Haplotypes Modulate Protein Expression by Altering mRNA Secondary Structure , 2006, Science.

[37]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[38]  K. Strimmer,et al.  TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics , 2004, BMC Evolutionary Biology.

[39]  A. Komar Genetics. SNPs, silent but not invisible. , 2007, Science.

[40]  Benjamin D. Redelings,et al.  BAli-Phy: simultaneous Bayesian inference of alignment and phylogeny , 2006, Bioinform..

[41]  D. Haussler,et al.  Phylogenetic estimation of context-dependent substitution rates by maximum likelihood. , 2003, Molecular biology and evolution.

[42]  J. L. Jensen,et al.  Probabilistic models of DNA sequence evolution with context dependent rates of substitution , 2000, Advances in Applied Probability.

[43]  R. Nielsen,et al.  Detecting Site-Specific Physicochemical Selective Pressures: Applications to the Class I HLA of the Human Major Histocompatibility Complex and the SRK of the Plant Sporophytic Self-Incompatibility System , 2005, Journal of Molecular Evolution.

[44]  I Holmes,et al.  An expectation maximization algorithm for training hidden substitution models. , 2002, Journal of molecular biology.

[45]  Claudine Levasseur,et al.  Total Evidence, Average Consensus and Matrix Representation with Parsimony: What a Difference Distances Make , 2006, Evolutionary bioinformatics online.

[46]  J. Felsenstein Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.

[47]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[48]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[49]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[50]  D. Posada,et al.  Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. , 2004, Systematic biology.

[51]  D. Liberles,et al.  The quest for natural selection in the age of comparative genomics , 2007, Heredity.

[52]  Nick Goldman,et al.  Accuracy and Power of Statistical Methods for Detecting Adaptive Evolution in Protein Coding Sequences and for Identifying Positively Selected Sites , 2004, Genetics.

[53]  M. Hubisz,et al.  Maximum likelihood estimation of ancestral codon usage bias parameters in Drosophila. , 2006, Molecular biology and evolution.

[54]  M. Gottesman,et al.  The sounds of silence: synonymous mutations affect function. , 2007, Pharmacogenomics.

[55]  M. Matz,et al.  Evolution of Coral Pigments Recreated , 2004, Science.

[56]  H. Jeffreys Some Tests of Significance, Treated by the Theory of Probability , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[57]  T. Massingham,et al.  Detecting Amino Acid Sites Under Positive Selection and Purifying Selection , 2005, Genetics.

[58]  B. Bainbridge,et al.  Genetics , 1981, Experientia.

[59]  Nicolas Lartillot,et al.  A site- and time-heterogeneous model of amino acid replacement. , 2008, Molecular biology and evolution.

[60]  Z. Yang,et al.  Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. , 1998, Molecular biology and evolution.

[61]  J. Gillespie The causes of molecular evolution , 1991 .

[62]  Itay Mayrose,et al.  Towards realistic codon models: among site variability and dependency of synonymous and non-synonymous rates , 2007, ISMB/ECCB.

[63]  Hervé Philippe,et al.  Uniformization for sampling realizations of Markov processes: applications to Bayesian implementations of codon substitution models , 2008, Bioinform..

[64]  A. Hobolth,et al.  Quantifying the impact of protein tertiary structure on molecular evolution. , 2007, Molecular biology and evolution.

[65]  C. Seoighe,et al.  A Bayesian model comparison approach to inferring positive selection. , 2005, Molecular biology and evolution.

[66]  W. M. Fitch,et al.  Rate of change of concomitantly variable codons , 2005, Journal of Molecular Evolution.

[67]  Joaquín Dopazo,et al.  Positive Selection, Relaxation, and Acceleration in the Evolution of the Human and Chimp Genome , 2006, PLoS Comput. Biol..

[68]  Yoshiyuki Suzuki,et al.  New Methods for Detecting Positive Selection at Single Amino Acid Sites , 2004, Journal of Molecular Evolution.

[69]  Maria Anisimova,et al.  Phylogenomic analysis of natural selection pressure in Streptococcus genomes , 2007, BMC Evolutionary Biology.

[70]  Gaston H. Gonnet,et al.  Empirical codon substitution matrix , 2005, BMC Bioinformatics.

[71]  H. Philippe,et al.  A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. , 2004, Molecular biology and evolution.

[72]  F. Ayala,et al.  Positive and Negative Selection in the β-Esterase Gene Cluster of the Drosophila melanogaster Subgroup , 2006, Journal of Molecular Evolution.

[73]  H. Akashi,et al.  Translational selection and molecular evolution. , 1998, Current opinion in genetics & development.

[74]  N. Goldman,et al.  Different versions of the Dayhoff rate matrix. , 2005, Molecular biology and evolution.

[75]  Ziheng Yang,et al.  Estimating the distribution of selection coefficients from phylogenetic data with applications to mitochondrial and viral DNA. , 2003, Molecular biology and evolution.

[76]  R. Nielsen,et al.  Pervasive adaptive evolution in mammalian fertilization proteins. , 2003, Molecular biology and evolution.

[77]  Laurent Duret,et al.  Evolution of synonymous codon usage in metazoans. , 2002, Current opinion in genetics & development.

[78]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[79]  Rasmus Nielsen,et al.  Mapping mutations on phylogenies , 2005 .

[80]  Georgii A. Bazykin,et al.  Positive selection at sites of multiple amino acid replacements since rat–mouse divergence , 2004, Nature.

[81]  Sergei L. Kosakovsky Pond,et al.  Evolutionary Interactions between N-Linked Glycosylation Sites in the HIV-1 Envelope , 2006, PLoS Comput. Biol..

[82]  Ziheng Yang,et al.  Mutation-selection models of codon substitution and their use to estimate selective strengths on codon usage. , 2008, Molecular biology and evolution.

[83]  Konrad Scheffler,et al.  Robust inference of positive selection from recombining coding sequences , 2006, Bioinform..

[84]  Jonathan P. Bollback,et al.  SIMMAP: Stochastic character mapping of discrete traits on phylogenies , 2006, BMC Bioinformatics.

[85]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[86]  S A Benner,et al.  Amino acid substitution during functionally constrained divergent evolution of protein sequences. , 1994, Protein engineering.

[87]  Jorge Vieira,et al.  The Evolution of Codon Preferences in Drosophila: A Maximum-Likelihood Approach to Parameter Estimation and Hypothesis Testing , 1999, Journal of Molecular Evolution.

[88]  W. Messier,et al.  Episodic adaptive evolution of primate lysozymes , 1997, Nature.

[89]  Ian Holmes,et al.  Transducers: an emerging probabilistic framework for modeling indels on trees , 2007, Bioinform..

[90]  J. Huelsenbeck,et al.  Bayesian Estimation of Positively Selected Sites , 2004, Journal of Molecular Evolution.

[91]  Sergei L. Kosakovsky Pond,et al.  An Evolutionary-Network Model Reveals Stratified Interactions in the V3 Loop of the HIV-1 Envelope , 2007, PLoS Comput. Biol..

[92]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[93]  K. Crandall,et al.  Rhodopsin evolution in the dark , 1997, Nature.

[94]  Ziheng Yang,et al.  A Maximum Likelihood Method for Detecting Functional Divergence at Individual Codon Sites, with Application to Gene Family Evolution , 2004, Journal of Molecular Evolution.

[95]  L. Hurst,et al.  Hearing silence: non-neutral evolution at synonymous sites in mammals , 2006, Nature Reviews Genetics.

[96]  F. Scholz Maximum Likelihood Estimation , 2006 .

[97]  Hirohisa Kishino,et al.  Synonymous substitutions substantially improve evolutionary inference from highly diverged proteins. , 2008, Systematic biology.

[98]  Durbin,et al.  Biological Sequence Analysis , 1998 .

[99]  David T. Jones,et al.  Protein evolution with dependence among codons due to tertiary structure. , 2003, Molecular biology and evolution.

[100]  Roald Forsberg,et al.  A codon-based model of host-specific selection in parasites, with an application to the influenza A virus. , 2003, Molecular biology and evolution.

[101]  Gaston H. Gonnet,et al.  Darwin v. 2.0: an interpreted computer language for the biosciences , 2000, Bioinform..

[102]  Sergei L. Kosakovsky Pond,et al.  GARD: a genetic algorithm for recombination detection , 2006, Bioinform..

[103]  Simon Whelan,et al.  Spatial and temporal heterogeneity in nucleotide sequence evolution. , 2008, Molecular biology and evolution.

[104]  Z. Yang,et al.  Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. , 2001, Molecular biology and evolution.

[105]  Zaid Abdo,et al.  Performance-based selection of likelihood models for phylogeny estimation. , 2003, Systematic biology.

[106]  R A Goldstein,et al.  Context-dependent optimal substitution matrices. , 1995, Protein engineering.

[107]  Sergei L. Kosakovsky Pond,et al.  Not so different after all: a comparison of methods for detecting amino acid sites under selection. , 2005, Molecular biology and evolution.

[108]  Sergei L. Kosakovsky Pond,et al.  A genetic algorithm approach to detecting lineage-specific variation in selection pressure. , 2005, Molecular biology and evolution.

[109]  Tal Pupko,et al.  A covarion-based method for detecting molecular adaptation: application to the evolution of primate mitochondrial genomes , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[110]  J. M. Smith,et al.  Synonymous nucleotide divergence: what is "saturation"? , 1996, Genetics.

[111]  W. Wong,et al.  Bayes empirical bayes inference of amino acid sites under positive selection. , 2005, Molecular biology and evolution.

[112]  H. Philippe,et al.  Assessing site-interdependent phylogenetic models of sequence evolution. , 2006, Molecular biology and evolution.

[113]  Joseph P Bielawski,et al.  Gene conversion and functional divergence in the beta-globin gene family. , 2004, Journal of molecular evolution.

[114]  P. Higgs,et al.  Identification of Conflicting Selective Effects on Highly Expressed Genes , 2007, Evolutionary bioinformatics online.

[115]  A. Halpern,et al.  Evolutionary distances for protein-coding sequences: modeling site-specific residue frequencies. , 1998, Molecular biology and evolution.

[116]  F. Wright The 'effective number of codons' used in a gene. , 1990, Gene.

[117]  D. Labie,et al.  Molecular Evolution , 1991, Nature.

[118]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[119]  S. Aris-Brosou,et al.  Large-scale analyses of synonymous substitution rates can be sensitive to assumptions about the process of mutation. , 2006, Gene.

[120]  S. Tobe,et al.  Reconstruction of ancestral FGLamide-type insect allatostatins: a novel approach to the study of allatostatin function and evolution. , 2008, Journal of insect physiology.

[121]  M. Pérez‐Losada,et al.  Disease progression and evolution of the HIV-1 env gene in 24 infected infants. , 2008, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[122]  M. Gouy,et al.  A nonhyperthermophilic common ancestor to extant life forms. , 1999, Science.

[123]  P. Sharp,et al.  The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. , 1987, Nucleic acids research.

[124]  Lippincott-Schwartz,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S8 Table S1 Movies S1 to S3 a " Silent " Polymorphism in the Mdr1 Gene Changes Substrate Specificity Corrected 30 November 2007; See Last Page , 2022 .

[125]  Itay Mayrose,et al.  A Gamma mixture model better accounts for among site rate heterogeneity , 2005, ECCB/JBI.

[126]  Hong Gu,et al.  Methods for selecting fixed-effect models for heterogeneous codon evolution, with comments on their application to gene and genome data , 2007, BMC Evolutionary Biology.

[127]  David Haussler,et al.  Combining Phylogenetic and Hidden Markov Models in Biosequence Analysis , 2004, J. Comput. Biol..

[128]  M. Adams,et al.  Inferring Nonneutral Evolution from Human-Chimp-Mouse Orthologous Gene Trios , 2003, Science.

[129]  R. Nielsen,et al.  Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. , 1998, Genetics.

[130]  Hiroshi Tanaka,et al.  An empirical examination of the utility of codon-substitution models in phylogeny reconstruction. , 2005, Systematic biology.

[131]  Asger Hobolth,et al.  Pseudo-Likelihood Analysis of Codon Substitution Models with Neighbor-Dependent Rates , 2005, J. Comput. Biol..

[132]  Michael Emerman,et al.  Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[133]  Timothy B Sackton,et al.  A Scan for Positively Selected Genes in the Genomes of Humans and Chimpanzees , 2005, PLoS biology.

[134]  Adi Stern,et al.  An evolutionary space-time model with varying among-site dependencies. , 2006, Molecular biology and evolution.

[135]  David Posada,et al.  Automated phylogenetic detection of recombination using a genetic algorithm. , 2006, Molecular biology and evolution.

[136]  L. Duret,et al.  Pervasive positive selection on duplicated and nonduplicated vertebrate protein coding genes. , 2008, Genome research.

[137]  John P Huelsenbeck,et al.  A Dirichlet process model for detecting positive selection in protein-coding DNA sequences. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[138]  Ziheng Yang,et al.  Codon-substitution models to detect adaptive evolution that account for heterogeneous selective pressures among site classes. , 2002, Molecular biology and evolution.

[139]  Alexei J Drummond,et al.  Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. , 2006, Molecular biology and evolution.

[140]  David Posada,et al.  Recodon: Coalescent simulation of coding DNA sequences with recombination, migration and demography , 2007, BMC Bioinformatics.

[141]  Ziheng Yang,et al.  Statistical methods for detecting molecular adaptation , 2000, Trends in Ecology & Evolution.

[142]  Joseph P. Bielawski,et al.  Maximum likelihood methods for detecting adaptive evolution after gene duplication , 2004, Journal of Structural and Functional Genomics.

[143]  Z. Yang,et al.  Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. , 2000, Molecular biology and evolution.

[144]  C. Wiuf,et al.  A codon-based model designed to describe lentiviral evolution. , 1998, Molecular biology and evolution.

[145]  P. Sharp,et al.  Evidence for a high frequency of simultaneous double-nucleotide substitutions. , 2000, Science.

[146]  Hirohisa Kishino,et al.  Estimating absolute rates of synonymous and nonsynonymous nucleotide substitution in order to characterize natural selection and date species divergences. , 2004, Molecular biology and evolution.

[147]  R. Nielsen,et al.  Patterns of Positive Selection in Six Mammalian Genomes , 2008, PLoS genetics.

[148]  W. Bruno,et al.  Performance of a divergence time estimation method under a probabilistic model of rate evolution. , 2001, Molecular biology and evolution.

[149]  M. Kimura Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution , 1977, Nature.

[150]  Derrick J. Zwickl Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion , 2006 .

[151]  Asger Hobolth,et al.  CpG + CpNpG analysis of protein-coding sequences from tomato. , 2006, Molecular biology and evolution.

[152]  Ian Holmes,et al.  XRate: a fast prototyping, training and annotation tool for phylo-grammars , 2006, BMC Bioinformatics.

[153]  M. Nei,et al.  A new method of inference of ancestral nucleotide and amino acid sequences. , 1995, Genetics.

[154]  B. Chang Ancestral Gene Reconstruction and Synthesis of Ancient Rhodopsins in the Laboratory1 , 2003, Integrative and comparative biology.

[155]  R. Nielsen,et al.  Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. , 2002, Molecular biology and evolution.

[156]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[157]  David L. Suarez Influenza A virus , 2009 .

[158]  R. Nielsen,et al.  Detecting Positively Selected Amino Acid Sites Using Posterior Predictive P-Values , 2001, Pacific Symposium on Biocomputing.

[159]  Sergei L. Kosakovsky Pond,et al.  Adaptation to Different Human Populations by HIV-1 Revealed by Codon-Based Analyses , 2006, PLoS Comput. Biol..

[160]  J. L. King,et al.  Evolutionary nucleotide replacements in DNA , 1979, Nature.

[161]  S. Muse,et al.  A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. , 1994, Molecular biology and evolution.

[162]  P. Lemey,et al.  Evolutionary dynamics of human retroviruses investigated through full-genome scanning. , 2005, Molecular biology and evolution.

[163]  Sergei L. Kosakovsky Pond,et al.  Estimating selection pressures on HIV‐1 using phylogenetic likelihood models , 2008, Statistics in medicine.

[164]  J. L. Jensen,et al.  A dependent-rates model and an MCMC-based methodology for the maximum-likelihood analysis of sequences with overlapping reading frames. , 2001, Molecular biology and evolution.

[165]  Sergei L. Kosakovsky Pond,et al.  Synonymous Substitution Rates Predict HIV Disease Progression as a Result of Underlying Replication Dynamics , 2007, PLoS Comput. Biol..

[166]  T. Pupko,et al.  A combined empirical and mechanistic codon model. , 2006, Molecular biology and evolution.

[167]  Hervé Philippe,et al.  Bayesian Comparisons of Codon Substitution Models , 2008, Genetics.

[168]  Nick Goldman,et al.  Statistical tests of models of DNA substitution , 1993, Journal of Molecular Evolution.

[169]  Wendy S. W. Wong,et al.  Identification of physicochemical selective pressure on protein encoding nucleotide sequences , 2006, BMC Bioinformatics.

[170]  Matthew W. Dimmic,et al.  Detecting coevolving amino acid sites using Bayesian mutational mapping , 2005, ISMB.

[171]  J. Shaffer Multiple Hypothesis Testing , 1995 .

[172]  Stéphane Guindon,et al.  Modeling the site-specific variation of selection patterns along lineages. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[173]  Z. Yang,et al.  A space-time process model for the evolution of DNA sequences. , 1995, Genetics.

[174]  B. Larget,et al.  Markov Chain Monte Carlo Algorithms for the Bayesian Analysis of Phylogenetic Trees , 2000 .

[175]  J. Keilson Markov Chain Models--Rarity And Exponentiality , 1979 .

[176]  M. Zvelebil,et al.  A model of directional selection applied to the evolution of drug resistance in HIV-1. , 2007, Molecular biology and evolution.

[177]  S. Aris-Brosou Identifying sites under positive selection with uncertain parameter estimates. , 2006, Genome.

[178]  B. Hall,et al.  Simulating DNA coding sequence evolution with EvolveAGene 3. , 2008, Molecular biology and evolution.

[179]  Ziheng Yang,et al.  Inferring speciation times under an episodic molecular clock. , 2007, Systematic biology.

[180]  Sergei L. Kosakovsky Pond,et al.  HyPhy: hypothesis testing using phylogenies , 2005, Bioinform..

[181]  R. Nielsen,et al.  Mutations as missing data: inferences on the ages and distributions of nonsynonymous and synonymous mutations. , 2001, Genetics.

[182]  Joseph P Bielawski,et al.  Accuracy and power of bayes prediction of amino acid sites under positive selection. , 2002, Molecular biology and evolution.

[183]  N. Goldman,et al.  Codon-substitution models for heterogeneous selection pressure at amino acid sites. , 2000, Genetics.

[184]  T. Pupko,et al.  Airing the word on pollution. , 1996, Environmental health perspectives.

[185]  Elena Rivas,et al.  Evolutionary models for insertions and deletions in a probabilistic modeling framework , 2005, BMC Bioinformatics.

[186]  W DimmicMatt,et al.  Markov Models of Protein Sequence Evolution , 2005 .

[187]  Ian Holmes,et al.  An empirical codon model for protein sequence evolution. , 2007, Molecular biology and evolution.

[188]  Christopher J. Lee,et al.  Distinguishing HIV-1 drug resistance, accessory, and viral fitness mutations using conditional selection pressure analysis of treated versus untreated patient samples , 2006, Biology Direct.