An inventory of the bacterial macromolecular components and their spatial organization.

Formerly regarded as small 'bags' of nucleic acids with randomly diffusing enzymes, bacteria are organized by a sophisticated and tightly regulated molecular machinery. Here, we review qualitative and quantitative data on the intracellular organization of bacteria and provide a detailed inventory of macromolecular structures such as the divisome, the degradosome and the bacterial 'nucleolus'. We discuss how these metabolically active structures manage the spatial organization of the cell and how macromolecular crowding influences them. We present for the first time a visualization program, lifeexplorer, that can be used to study the interplay between metabolism and spatial organization of a prokaryotic cell.

[1]  M. de Pedro,et al.  Morphogenesis of rod-shaped sacculi. , 2008, FEMS microbiology reviews.

[2]  S. Busby,et al.  Transcription factor distribution in Escherichia coli: studies with FNR protein , 2006, Nucleic acids research.

[3]  H. Erickson,et al.  FtsZ from Escherichia coli, Azotobacter vinelandii, and Thermotoga maritima--quantitation, GTP hydrolysis, and assembly. , 1998, Cell motility and the cytoskeleton.

[4]  Stéphane Robin,et al.  The MatP/matS Site-Specific System Organizes the Terminus Region of the E. coli Chromosome into a Macrodomain , 2008, Cell.

[5]  K. Young The Selective Value of Bacterial Shape , 2006, Microbiology and Molecular Biology Reviews.

[6]  G. Jensen,et al.  The structure of FtsZ filaments in vivo suggests a force‐generating role in cell division , 2007, The EMBO journal.

[7]  J. E. Cabrera,et al.  Active Transcription of rRNA Operons Condenses the Nucleoid in Escherichia coli: Examining the Effect of Transcription on Nucleoid Structure in the Absence of Transertion , 2009, Journal of bacteriology.

[8]  Daniel P. Haeusser,et al.  The great divide: coordinating cell cycle events during bacterial growth and division. , 2008, Current opinion in microbiology.

[9]  M. Record,et al.  Roles of cytoplasmic osmolytes, water, and crowding in the response of Escherichia coli to osmotic stress: biophysical basis of osmoprotection by glycine betaine. , 2003, Biochemistry.

[10]  L. Acerenza,et al.  On the Origins of a Crowded Cytoplasm , 2006, Journal of Molecular Evolution.

[11]  H. Erickson Modeling the physics of FtsZ assembly and force generation , 2009, Proceedings of the National Academy of Sciences.

[12]  M. Radosavljevic,et al.  Biological Physics: Energy, Information, Life , 2003 .

[13]  Antoine Danchin,et al.  A phylogenetic view of bacterial ribonucleases. , 2009, Progress in molecular biology and translational science.

[14]  Ronan M. T. Fleming,et al.  Genome-Scale Reconstruction of Escherichia coli's Transcriptional and Translational Machinery: A Knowledge Base, Its Mathematical Formulation, and Its Functional Characterization , 2009, PLoS Comput. Biol..

[15]  P. Dennis,et al.  Cytoplasmic RNA Polymerase inEscherichia coli , 2001, Journal of bacteriology.

[16]  Sam Dukan,et al.  Protein Aggregates: an Aging Factor Involved in Cell Death , 2008, Journal of bacteriology.

[17]  R. Vries DNA condensation in bacteria: Interplay between macromolecular crowding and nucleoid proteins , 2010 .

[18]  Grant J Jensen,et al.  Electron cryotomography of the E. coli pyruvate and 2-oxoglutarate dehydrogenase complexes. , 2005, Structure.

[19]  P. D. de Boer,et al.  Dimeric structure of the cell shape protein MreC and its functional implications , 2006, Molecular microbiology.

[20]  Expanding to fill the gap: A possible role for inert biopolymers in regulating the extent of the ‘macromolecular crowding’ effect , 2006, FEBS letters.

[21]  K. Davies,et al.  Localization of rRNA Synthesis in Bacillus subtilis: Characterization of Loci Involved in Transcription Focus Formation , 2003, Journal of bacteriology.

[22]  J. Hoskins,et al.  ClpXP protease degrades the cytoskeletal protein, FtsZ, and modulates FtsZ polymer dynamics , 2009, Proceedings of the National Academy of Sciences.

[23]  Mohit Kumar,et al.  Mobility of cytoplasmic, membrane, and DNA-binding proteins in Escherichia coli. , 2010, Biophysical journal.

[24]  I. Booth,et al.  Mechanosensitive Channels: Their Mechanisms and Roles in Preserving Bacterial Ultrastructure During Adaptation to Environmental Changes , 2008 .

[25]  W. Scott,et al.  Structure of Escherichia coli RNase E catalytic domain and implications for RNA turnover , 2005, Nature.

[26]  G. Churchward,et al.  Synthesis and activity of ribonucleic acid polymerase in Escherichia coli , 1980, Journal of bacteriology.

[27]  H H McAdams,et al.  Why and How Bacteria Localize Proteins , 2009, Science.

[28]  S. Zimmerman,et al.  Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. , 1991, Journal of molecular biology.

[29]  H. E. Kubitschek Increase in cell mass during the division cycle of Escherichia coli B/rA , 1986, Journal of bacteriology.

[30]  K. Young,et al.  In Escherichia coli, MreB and FtsZ Direct the Synthesis of Lateral Cell Wall via Independent Pathways That Require PBP 2 , 2009, Journal of bacteriology.

[31]  J. de Gier,et al.  Biogenesis of inner membrane proteins in Escherichia coli , 2001, Molecular microbiology.

[32]  A. L. Koch,et al.  Variability of the turgor pressure of individual cells of the gram-negative heterotroph Ancylobacter aquaticus , 1987, Journal of bacteriology.

[33]  J. Dziadek,et al.  Mycobacterium tuberculosis ClpX Interacts with FtsZ and Interferes with FtsZ Assembly , 2010, PloS one.

[34]  K. Gerdes,et al.  Plasmid segregation: spatial awareness at the molecular level , 2007, The Journal of cell biology.

[35]  Judith Herzfeld,et al.  Crowding‐induced organization in cells: spontaneous alignment and sorting of filaments with physiological control points , 2004, Journal of molecular recognition : JMR.

[36]  Donald A. Drew,et al.  A polymerization-depolymerization model that accurately generates the self-sustained oscillatory system involved in bacterial division site placement , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[37]  H. Bremer Modulation of Chemical Composition and Other Parameters of the Cell by Growth Rate , 1999 .

[38]  G. Dougan,et al.  Cooperation Between Translating Ribosomes and RNA Polymerase in Transcription Elongation , 2010, Science.

[39]  Julio O. Ortiz,et al.  The Native 3D Organization of Bacterial Polysomes , 2009, Cell.

[40]  M. Maurizi,et al.  Turnover of Endogenous SsrA-tagged Proteins Mediated by ATP-dependent Proteases in Escherichia coli* , 2008, Journal of Biological Chemistry.

[41]  Daniel P. Haeusser,et al.  A Metabolic Sensor Governing Cell Size in Bacteria , 2007, Cell.

[42]  Yu-Ling Shih,et al.  The MreB and Min cytoskeletal‐like systems play independent roles in prokaryotic polar differentiation , 2005, Molecular microbiology.

[43]  A. Pulk,et al.  Ribosome reactivation by replacement of damaged proteins , 2010, Molecular microbiology.

[44]  J. Errington,et al.  Compartmentalization of transcription and translation in Bacillus subtilis , 2000, The EMBO journal.

[45]  R. Mullins,et al.  In vivo visualization of type II plasmid segregation: bacterial actin filaments pushing plasmids , 2007, The Journal of cell biology.

[46]  G. Rivas,et al.  Essential Cell Division Protein FtsZ Assembles into One Monomer-thick Ribbons under Conditions Resembling the Crowded Intracellular Environment* , 2003, Journal of Biological Chemistry.

[47]  J. A. Valkenburg,et al.  Phase separation between nucleoid and cytoplasm in Escherichia coli as defined by immersive refractometry , 1984, Journal of bacteriology.

[48]  A. Minton,et al.  Protein aggregation in crowded environments , 2006, Biological chemistry.

[49]  D Penny,et al.  Genomics and the Irreducible Nature of Eukaryote Cells , 2006, Science.

[50]  E. Rubin,et al.  Bacterial Growth and Cell Division: a Mycobacterial Perspective , 2008, Microbiology and Molecular Biology Reviews.

[51]  F. Harold,et al.  Molecules into Cells: Specifying Spatial Architecture , 2005, Microbiology and Molecular Biology Reviews.

[52]  F. Hartl,et al.  Converging concepts of protein folding in vitro and in vivo , 2009, Nature Structural &Molecular Biology.

[53]  J. Mingorance,et al.  Concentration and Assembly of the Division Ring Proteins FtsZ, FtsA, and ZipA during the Escherichia coli Cell Cycle , 2003, Journal of bacteriology.

[54]  M. Zółkiewski,et al.  A camel passes through the eye of a needle: protein unfolding activity of Clp ATPases , 2006, Molecular microbiology.

[55]  R. de Vries,et al.  DNA condensation in bacteria: Interplay between macromolecular crowding and nucleoid proteins. , 2010, Biochimie.

[56]  F. Neidhart Escherichia coli and Salmonella. , 1996 .

[57]  H. Saibil,et al.  Structural basis for the regulated protease and chaperone function of DegP , 2008, Nature.

[58]  Yu-Ling Shih,et al.  The Bacterial Cytoskeleton , 2006, Microbiology and Molecular Biology Reviews.

[59]  Jolyon Holdstock,et al.  Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[60]  S. Butler,et al.  Self‐compartmentalized bacterial proteases and pathogenesis , 2006, Molecular microbiology.

[61]  M. Kessel,et al.  E. coli transports aggregated proteins to the poles by a specific and energy-dependent process. , 2009, Journal of molecular biology.

[62]  A. Minton,et al.  Influence of macromolecular crowding upon the stability and state of association of proteins: predictions and observations. , 2005, Journal of pharmaceutical sciences.

[63]  George M. Church,et al.  Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K‐12 , 1997, Electrophoresis.

[64]  T. Odijk,et al.  Osmotic compaction of supercoiled DNA into a bacterial nucleoid. , 1998, Biophysical chemistry.

[65]  Yves V. Brun,et al.  Getting in the Loop: Regulation of Development in Caulobacter crescentus , 2010, Microbiology and Molecular Biology Reviews.

[66]  C. Woldringh,et al.  Changes in cell diameter during the division cycle of Escherichia coli , 1980, Journal of bacteriology.

[67]  R. Cancedda,et al.  Localization of Polyribosomes Containing Alkaline Phosphatase Nascent Polypeptides on Membranes of Escherichia coli , 1974, Journal of bacteriology.

[68]  J. E. Cabrera,et al.  The distribution of RNA polymerase in Escherichia coli is dynamic and sensitive to environmental cues , 2003, Molecular microbiology.

[69]  M. Deutscher,et al.  Degradation of RNA in bacteria: comparison of mRNA and stable RNA , 2006, Nucleic acids research.

[70]  S. Zimmerman,et al.  Macromolecular crowding and the mandatory condensation of DNA in bacteria , 1996, FEBS letters.

[71]  E. Rocha The organization of the bacterial genome. , 2008, Annual review of genetics.

[72]  G. Jensen,et al.  Toward a biomechanical understanding of whole bacterial cells. , 2008, Annual review of biochemistry.

[73]  Peter J Lewis Bacterial subcellular architecture: recent advances and future prospects , 2004, Molecular microbiology.

[74]  H. Taguchi,et al.  A systematic survey of in vivo obligate chaperonin‐dependent substrates , 2010, The EMBO journal.

[75]  P. D. de Boer,et al.  ZipA Is Required for Recruitment of FtsK, FtsQ, FtsL, and FtsN to the Septal Ring in Escherichia coli , 2002, Journal of bacteriology.

[76]  J. Frank,et al.  Three-dimensional reconstruction with contrast transfer function correction from energy-filtered cryoelectron micrographs: procedure and application to the 70S Escherichia coli ribosome. , 1997, Journal of structural biology.

[77]  O. Medalia,et al.  Chromatin Organization and Radio Resistance in the Bacterium Gemmata obscuriglobus , 2008, Journal of bacteriology.

[78]  L. Rothfield,et al.  RNaseE and the other constituents of the RNA degradosome are components of the bacterial cytoskeleton , 2007, Proceedings of the National Academy of Sciences.

[79]  F. Striebel,et al.  Controlled destruction: AAA+ ATPases in protein degradation from bacteria to eukaryotes. , 2009, Current opinion in structural biology.

[80]  K. Young Bacterial shape , 2003, Molecular microbiology.

[81]  Jeff Errington,et al.  Bacterial cell division: assembly, maintenance and disassembly of the Z ring , 2009, Nature Reviews Microbiology.

[82]  D. Sherratt,et al.  Replication-directed sister chromosome alignment in Escherichia coli , 2009, Molecular microbiology.

[83]  R. Reed,et al.  Determination of turgor pressure in Bacillus subtilis: a possible role for K+ in turgor regulation. , 1990, Journal of general microbiology.

[84]  Kerry Bloom,et al.  Towards building a chromosome segregation machine , 2010, Nature.

[85]  A. Ishihama,et al.  Fundamental structural units of the Escherichia coli nucleoid revealed by atomic force microscopy. , 2004, Nucleic acids research.

[86]  D. Moinier,et al.  Existence of Abnormal Protein Aggregates in Healthy Escherichia coli Cells , 2007, Journal of bacteriology.

[87]  M. Nomura,et al.  Regulation of Ribosome Biosynthesis in Escherichia coli and Saccharomyces cerevisiae: Diversity and Common Principles , 1999, Journal of bacteriology.

[88]  Deepa Sikriwal,et al.  Mycobacterium tuberculosis ClpC1 , 2008, The FEBS journal.

[89]  S. Jun,et al.  Entropy-driven spatial organization of highly confined polymers: Lessons for the bacterial chromosome , 2006, Proceedings of the National Academy of Sciences.

[90]  D. J. Naylor,et al.  Proteome-wide Analysis of Chaperonin-Dependent Protein Folding in Escherichia coli , 2005, Cell.

[91]  Zemer Gitai,et al.  An actin-like gene can determine cell polarity in bacteria. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[92]  Grant J Jensen,et al.  Electron cryotomography: a new view into microbial ultrastructure. , 2009, Current opinion in microbiology.

[93]  Sabine Pruggnaller,et al.  Quantitative and spatio‐temporal features of protein aggregation in Escherichia coli and consequences on protein quality control and cellular ageing , 2010, The EMBO journal.

[94]  S. Cohen,et al.  RNA degradosomes exist in vivo in Escherichia coli as multicomponent complexes associated with the cytoplasmic membrane via the N-terminal region of ribonuclease E. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[95]  G. Churchward,et al.  Growth rate-dependent control of chromosome replication initiation in Escherichia coli , 1981, Journal of bacteriology.

[96]  T. Kruse,et al.  Dysfunctional MreB inhibits chromosome segregation in Escherichia coli , 2003, The EMBO journal.

[97]  T. Yeates,et al.  Protein-based organelles in bacteria: carboxysomes and related microcompartments , 2008, Nature Reviews Microbiology.

[98]  E. Kellenberger,et al.  The bacterial nucleoid revisited. , 1994, Microbiological reviews.

[99]  W. Moore,et al.  Eubacterium aerofaciens (Eggerth) Prévot 1938: Emendation of Description and Designation of the Neotype Strain , 1971 .

[100]  P. Graumann,et al.  Bacillus subtilis actin-like protein MreB influences the positioning of the replication machinery and requires membrane proteins MreC/D and other actin-like proteins for proper localization , 2005, BMC Cell Biology.

[101]  Christian Lesterlin,et al.  Roles for replichores and macrodomains in segregation of the Escherichia coli chromosome , 2005, EMBO reports.

[102]  Akira Ishihama,et al.  A novel nucleoid protein of Escherichia coli induced under anaerobiotic growth conditions , 2010, Nucleic acids research.

[103]  Frederico J. Gueiros-Filho,et al.  A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ. , 2002, Genes & development.

[104]  Scott N Peterson,et al.  Comparison of two label-free global quantitation methods, APEX and 2D gel electrophoresis, applied to the Shigella dysenteriae proteome , 2009, Proteome Science.

[105]  A. Minton,et al.  The Influence of Macromolecular Crowding and Macromolecular Confinement on Biochemical Reactions in Physiological Media* , 2001, The Journal of Biological Chemistry.

[106]  S. Nakano,et al.  The ClpX chaperone modulates assembly of the tubulin‐like protein FtsZ , 2005, Molecular microbiology.

[107]  Nelly Dubarry,et al.  Fully efficient chromosome dimer resolution in Escherichia coli cells lacking the integral membrane domain of FtsK , 2010, The EMBO journal.

[108]  P. Lewis Subcellular Organisation in Bacteria , 2008 .

[109]  The map of the cell is in the chromosome. , 1997 .

[110]  François Taddei,et al.  Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation , 2008, Proceedings of the National Academy of Sciences.

[111]  Daniel P. Haeusser,et al.  ClpX Inhibits FtsZ Assembly in a Manner That Does Not Require Its ATP Hydrolysis-Dependent Chaperone Activity , 2009, Journal of bacteriology.

[112]  J. Beckwith,et al.  Diverse Paths to Midcell: Assembly of the Bacterial Cell Division Machinery , 2005, Current Biology.

[113]  Leigh G. Monahan,et al.  Trapping of a Spiral-Like Intermediate of the Bacterial Cytokinetic Protein FtsZ , 2006, Journal of bacteriology.

[114]  D. Sherratt,et al.  Independent Positioning and Action of Escherichia coli Replisomes in Live Cells , 2008, Cell.

[115]  Lucy Shapiro,et al.  Chromosome organization and segregation in bacteria. , 2006, Journal of structural biology.

[116]  W. Margolin,et al.  FtsZ Exhibits Rapid Movement and Oscillation Waves in Helix-like Patterns in Escherichia coli , 2004, Current Biology.

[117]  K. Luby-Phelps,et al.  Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. , 2000, International review of cytology.

[118]  Lucy Shapiro,et al.  Getting organized — how bacterial cells move proteins and DNA , 2008, Nature Reviews Microbiology.

[119]  Akira Ishihama,et al.  Two types of localization of the DNA‐binding proteins within the Escherichia coli nucleoid , 2000, Genes to cells : devoted to molecular & cellular mechanisms.

[120]  O. Espéli,et al.  Organization of the Escherichia coli chromosome into macrodomains and its possible functional implications. , 2006, Journal of structural biology.

[121]  Gordon Broderick,et al.  Localization, Annotation, and Comparison of the Escherichia coli K-12 Proteome under Two States of Growth*S , 2005, Molecular & Cellular Proteomics.

[122]  T. Baker,et al.  ATP-dependent proteases of bacteria: recognition logic and operating principles. , 2006, Trends in biochemical sciences.

[123]  E. Kellenberger,et al.  Shape and fine structure of nucleoids observed on sections of ultrarapidly frozen and cryosubstituted bacteria , 1985, Journal of bacteriology.

[124]  O. Espéli,et al.  DNA dynamics vary according to macrodomain topography in the E. coli chromosome , 2008, Molecular microbiology.

[125]  N. Kleckner,et al.  Chromosome and Replisome Dynamics in E. coli: Loss of Sister Cohesion Triggers Global Chromosome Movement and Mediates Chromosome Segregation , 2005, Cell.

[126]  Michio Homma,et al.  Helical distribution of the bacterial chemoreceptor via colocalization with the Sec protein translocation machinery , 2006, Molecular microbiology.

[127]  Michael A Fischbach,et al.  A singular enzymatic megacomplex from Bacillus subtilis , 2007, Proceedings of the National Academy of Sciences.

[128]  K. Clements,et al.  Extreme polyploidy in a large bacterium , 2008, Proceedings of the National Academy of Sciences.

[129]  Bernhard Ø. Palsson,et al.  Immobilization of Escherichia coli RNA Polymerase and Location of Binding Sites by Use of Chromatin Immunoprecipitation and Microarrays , 2005, Journal of bacteriology.

[130]  Irina A. Shkel,et al.  Cytoplasmic Protein Mobility in Osmotically Stressed Escherichia coli , 2008, Journal of bacteriology.

[131]  S. Schnell,et al.  Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws. , 2004, Progress in biophysics and molecular biology.

[132]  C. Woldringh,et al.  Variation in Escherichia coli buoyant density measured in Percoll gradients , 1981, Journal of bacteriology.

[133]  H. Erickson,et al.  FtsZ condensates: An in vitro electron microscopy study , 2009, Biopolymers.

[134]  J. Holton,et al.  Structures of the Bacterial Ribosome at 3.5 Å Resolution , 2005, Science.

[135]  M. Thanbichler,et al.  Synchronization of chromosome dynamics and cell division in bacteria. , 2010, Cold Spring Harbor perspectives in biology.

[136]  A. Ishii,et al.  FtsZ‐dependent localization of GroEL protein at possible division sites , 2004, Genes to cells : devoted to molecular & cellular mechanisms.

[137]  D. Frishman,et al.  Protein abundance profiling of the Escherichia coli cytosol , 2008, BMC Genomics.

[138]  Jan Löwe,et al.  Dynamic filaments of the bacterial cytoskeleton. , 2006, Annual review of biochemistry.

[139]  Subcellular distribution of enzyme I of the Escherichia coli phosphoenolpyruvate:glycose phosphotransferase system depends on growth conditions. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[140]  P. Lichter,et al.  Experimental evidence for the influence of molecular crowding on nuclear architecture , 2007, Journal of Cell Science.

[141]  Alasdair C Steven,et al.  ClpA and ClpX ATPases bind simultaneously to opposite ends of ClpP peptidase to form active hybrid complexes. , 2004, Journal of structural biology.

[142]  P. Bork,et al.  Proteome Organization in a Genome-Reduced Bacterium , 2009, Science.

[143]  S. Zimmerman,et al.  Shape and compaction of Escherichia coli nucleoids. , 2006, Journal of structural biology.

[144]  David S. Goodsell The machinery of life , 1993 .

[145]  T. Hwa,et al.  Growth-rate-dependent partitioning of RNA polymerases in bacteria , 2008, Proceedings of the National Academy of Sciences.

[146]  C. Woldringh,et al.  Structural and physical aspects of bacterial chromosome segregation. , 2006, Journal of structural biology.

[147]  M. Ehrenberg,et al.  Free RNA polymerase and modeling global transcription in Escherichia coli. , 2003, Biochimie.

[148]  B. Poolman,et al.  The Role of Biomacromolecular Crowding, Ionic Strength, and Physicochemical Gradients in the Complexities of Life's Emergence , 2009, Microbiology and Molecular Biology Reviews.

[149]  Irina A. Shkel,et al.  Crowding and Confinement Effects on Protein Diffusion In Vivo , 2006, Journal of bacteriology.

[150]  W. Margolin Bacterial Mitosis: Actin in a New Role at the Origin , 2005, Current Biology.

[151]  D. Hall Protein self-association in the cell: a mechanism for fine tuning the level of macromolecular crowding? , 2006, European Biophysics Journal.

[152]  D. Sherratt,et al.  Escherichia coli and its chromosome. , 2008, Trends in microbiology.

[153]  Ariane Briegel,et al.  Electron Cryotomography of Bacterial Cells , 2010, Journal of visualized experiments : JoVE.

[154]  R. Ellis Macromolecular crowding : obvious but underappreciated , 2022 .

[155]  J. Errington,et al.  Control of Cell Shape in Bacteria Helical, Actin-like Filaments in Bacillus subtilis , 2001, Cell.

[156]  C. Jacobs-Wagner,et al.  Skin and bones: the bacterial cytoskeleton, cell wall, and cell morphogenesis , 2007, The Journal of cell biology.

[157]  J. E. Cabrera,et al.  Active Transcription of rRNA Operons Is a Driving Force for the Distribution of RNA Polymerase in Bacteria: Effect of Extrachromosomal Copies of rrnB on the In Vivo Localization of RNA Polymerase , 2006, Journal of bacteriology.

[158]  J. Lutkenhaus,et al.  Overview of cell shape: cytoskeletons shape bacterial cells. , 2007, Current opinion in microbiology.

[159]  O. Sliusarenko,et al.  Spatial organization of the flow of genetic information in bacteria , 2010, Nature.

[160]  Adrian H. Elcock,et al.  Diffusion, Crowding & Protein Stability in a Dynamic Molecular Model of the Bacterial Cytoplasm , 2010, PLoS Comput. Biol..

[161]  L. Amos,et al.  Molecules of the bacterial cytoskeleton. , 2004, Annual review of biophysics and biomolecular structure.

[162]  S. Zimmerman,et al.  A limited loss of DNA compaction accompanying the release of cytoplasm from cells of Escherichia coli. , 2001, Journal of structural biology.

[163]  T. Ando,et al.  AAA+ Chaperone ClpX Regulates Dynamics of Prokaryotic Cytoskeletal Protein FtsZ* , 2009, The Journal of Biological Chemistry.

[164]  A. Horwich,et al.  ClpS, a substrate modulator of the ClpAP machine. , 2002, Molecular cell.

[165]  L. Rothfield,et al.  New insights into the cellular organization of the RNA processing and degradation machinery of Escherichia coli , 2008, Molecular microbiology.

[166]  W. Margolin,et al.  Effects of Perturbing Nucleoid Structure on Nucleoid Occlusion-Mediated Toporegulation of FtsZ Ring Assembly , 2004, Journal of bacteriology.

[167]  Judith Herzfeld,et al.  Life in a crowded world , 2004, EMBO reports.

[168]  B. Luisi,et al.  The RNase E of Escherichia coli is a membrane‐binding protein , 2008, Molecular microbiology.

[169]  Julio O. Ortiz,et al.  Mapping 70S ribosomes in intact cells by cryoelectron tomography and pattern recognition. , 2006, Journal of structural biology.

[170]  Yu-Ling Shih,et al.  Division site placement in E.coli: mutations that prevent formation of the MinE ring lead to loss of the normal midcell arrest of growth of polar MinD membrane domains , 2002, The EMBO journal.

[171]  S. Doniach Biological Physics: Energy, Information, Life , 2003 .

[172]  James T. Park,et al.  Growth of Escherichia coli: Significance of Peptidoglycan Degradation during Elongation and Septation , 2008, Journal of bacteriology.

[173]  A. J. Carpousis The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E. , 2007, Annual review of microbiology.

[174]  L. Veenhoff,et al.  Molecular sieving properties of the cytoplasm of Escherichia coli and consequences of osmotic stress , 2010, Molecular microbiology.

[175]  K. Young,et al.  Bacterial shape , 2003 .

[176]  J. Errington,et al.  Dispersed mode of Staphylococcus aureus cell wall synthesis in the absence of the division machinery , 2003, Molecular microbiology.

[177]  M. Record,et al.  Biophysical characterization of changes in amounts and activity of Escherichia coli cell and compartment water and turgor pressure in response to osmotic stress. , 2000, Biophysical journal.

[178]  M. Elowitz,et al.  Protein Mobility in the Cytoplasm ofEscherichia coli , 1999, Journal of bacteriology.

[179]  L. Rothfield,et al.  RNaseE and RNA Helicase B Play Central Roles in the Cytoskeletal Organization of the RNA Degradosome* , 2008, Journal of Biological Chemistry.

[180]  A. L. Koch What size should a bacterium be? A question of scale. , 1996, Annual review of microbiology.

[181]  Huan‐Xiang Zhou,et al.  Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. , 2008, Annual review of biophysics.