The flux qubit revisited to enhance coherence and reproducibility

The scalable application of quantum information science will stand on reproducible and controllable high-coherence quantum bits (qubits). Here, we revisit the design and fabrication of the superconducting flux qubit, achieving a planar device with broad-frequency tunability, strong anharmonicity, high reproducibility and relaxation times in excess of 40 μs at its flux-insensitive point. Qubit relaxation times T1 across 22 qubits are consistently matched with a single model involving resonator loss, ohmic charge noise and 1/f-flux noise, a noise source previously considered primarily in the context of dephasing. We furthermore demonstrate that qubit dephasing at the flux-insensitive point is dominated by residual thermal-photons in the readout resonator. The resulting photon shot noise is mitigated using a dynamical decoupling protocol, resulting in T2≈85 μs, approximately the 2T1 limit. In addition to realizing an improved flux qubit, our results uniquely identify photon shot noise as limiting T2 in contemporary qubits based on transverse qubit–resonator interaction.

[1]  E. Purcell,et al.  Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments , 1954 .

[2]  Barrington. Moore The Outlook , 1956 .

[3]  S. Meiboom,et al.  Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times , 1958 .

[4]  Charles P. Slichter,et al.  LOW-FIELD RELAXATION AND THE STUDY OF ULTRASLOW ATOMIC MOTIONS BY MAGNETIC RESONANCE , 1964 .

[5]  C. Slichter,et al.  Observation of Ultra-Slow Translational Diffusion in Metallic Lithium by Magnetic Resonance , 1965 .

[6]  D. Look,et al.  Nuclear Magnetic Dipole—Dipole Relaxation Along the Static and Rotating Magnetic Fields: Application to Gypsum , 1966 .

[7]  Bernard Yurke,et al.  Quantum network theory , 1984 .

[8]  M. Devoret Quantum Fluctuations in Electrical Circuits , 1997 .

[9]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[10]  Seth Lloyd,et al.  Superconducting persistent-current qubit , 1999, cond-mat/9908283.

[11]  Orlando,et al.  Josephson Persistent-Current Qubit , 2022 .

[12]  P. Joyez,et al.  Manipulating the Quantum State of an Electrical Circuit , 2002, Science.

[13]  J. E. Mooij,et al.  Coherent Quantum Dynamics of a Superconducting Flux Qubit , 2003, Science.

[14]  John M. Martinis,et al.  Decoherence of a superconducting qubit due to bias noise , 2003 .

[15]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[16]  T Yamamoto,et al.  Quantum noise in the josephson charge qubit. , 2004, Physical review letters.

[17]  P. Bertet,et al.  Dephasing of a flux-qubit coupled to a harmonic oscillator , 2005, cond-mat/0507290.

[18]  D. DiVincenzo,et al.  Dephasing of a superconducting qubit induced by photon noise. , 2005, Physical review letters.

[19]  Yuriy Makhlin,et al.  Low- and high-frequency noise from coherent two-level systems. , 2005, Physical review letters.

[20]  D. DiVincenzo,et al.  Asymmetry and decoherence in a double-layer persistent-current qubit , 2004, cond-mat/0405273.

[21]  P. Joyez,et al.  Decoherence in a superconducting quantum bit circuit , 2005 .

[22]  L Frunzio,et al.  ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. , 2005, Physical review letters.

[23]  A. Niskanen,et al.  Decoherence of flux qubits due to 1/f flux noise. , 2006, Physical review letters.

[24]  Yuriy Makhlin,et al.  Decoherence from ensembles of two-level fluctuators , 2006 .

[25]  K. Berggren,et al.  Microwave-Induced Cooling of a Superconducting Qubit , 2006, Science.

[26]  Alexandre Blais,et al.  Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting , 2006 .

[27]  Using a qubit to measure photon-number statistics of a driven thermal oscillator , 2006, cond-mat/0611759.

[28]  Xuedong Hu,et al.  Low-decoherence flux qubit , 2007 .

[29]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[30]  R. J. Schoelkopf,et al.  Resolving photon number states in a superconducting circuit , 2007, Nature.

[31]  Jens Koch,et al.  Controlling the spontaneous emission of a superconducting transmon qubit. , 2008, Physical review letters.

[32]  S. Das Sarma,et al.  How to Enhance Dephasing Time in Superconducting Qubits , 2007, 0712.2225.

[33]  Alexandre Blais,et al.  Quantum trajectory approach to circuit QED: Quantum jumps and the Zeno effect , 2007, 0709.4264.

[34]  K. Berggren,et al.  Amplitude spectroscopy of a solid-state artificial atom , 2008, Nature.

[35]  Michael J. Biercuk,et al.  Optimized dynamical decoupling in a model quantum memory , 2008, Nature.

[36]  J. Martinis,et al.  Energy decay in superconducting Josephson-junction qubits from nonequilibrium quasiparticle excitations. , 2009, Physical review letters.

[37]  Michael J. Biercuk,et al.  Experimental Uhrig Dynamical Decoupling using Trapped Ions , 2009, 0902.2957.

[38]  Mary Beth Rothwell,et al.  High-coherence hybrid superconducting qubit. , 2010, Physical review letters.

[39]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[40]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[41]  E. Hahn,et al.  Spin Echoes , 2011 .

[42]  L. Frunzio,et al.  Quasiparticle relaxation of superconducting qubits in the presence of flux. , 2011, Physical review letters.

[43]  S. Girvin,et al.  Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.

[44]  Antonio Corcoles,et al.  Protecting superconducting qubits from radiation , 2011 .

[45]  R. Schoelkopf,et al.  Relaxation and frequency shifts induced by quasiparticles in superconducting qubits , 2011, 1106.0829.

[46]  F. Wellstood,et al.  Decoupling a Cooper-pair box to enhance the lifetime to 0.2 ms. , 2011, Physical review letters.

[47]  D. Cory,et al.  Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .

[48]  J. M. Gambetta,et al.  Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator , 2010, 1011.1949.

[49]  Yasunobu Nakamura,et al.  Spectroscopy of low-frequency noise and its temperature dependence in a superconducting qubit , 2012, 1201.5665.

[50]  M. Marthaler,et al.  Fragility of flux qubits against quasiparticle tunneling , 2011, 1109.2941.

[51]  S. Girvin,et al.  Photon Shot Noise Dephasing in the Strong-Dispersive Limit of Circuit QED , 2012, 1206.1265.

[52]  J M Gambetta,et al.  Measurement-induced qubit state mixing in circuit QED from up-converted dephasing noise. , 2012, Physical review letters.

[53]  E. Lucero,et al.  Planar Superconducting Resonators with Internal Quality Factors above One Million , 2012, 1201.3384.

[54]  J. Gambetta,et al.  Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms , 2012, 1202.5533.

[55]  E. Lucero,et al.  Excitation of superconducting qubits from hot nonequilibrium quasiparticles. , 2012, Physical review letters.

[56]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[57]  Jay M. Gambetta,et al.  Improved superconducting qubit coherence using titanium nitride , 2013, 1303.4071.

[58]  W. Oliver,et al.  Materials in superconducting quantum bits , 2013 .

[59]  R. Barends,et al.  Coherent Josephson qubit suitable for scalable quantum integrated circuits. , 2013, Physical review letters.

[60]  John Clarke,et al.  Magnetic flux noise in dc SQUIDs: temperature and geometry dependence. , 2013, Physical review letters.

[61]  Yasunobu Nakamura,et al.  Rotating-frame relaxation as a noise spectrum analyser of a superconducting qubit undergoing driven evolution , 2013, Nature Communications.

[62]  Yvonne Y Gao,et al.  Non-Poissonian quantum jumps of a fluxonium qubit due to quasiparticle excitations. , 2014, Physical review letters.

[63]  R. Schoelkopf,et al.  Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles , 2014, Nature.

[64]  G Catelani,et al.  Flux qubits with long coherence times for hybrid quantum circuits. , 2014, Physical review letters.

[65]  Yvonne Y Gao,et al.  Measurement and control of quasiparticle dynamics in a superconducting qubit , 2014, Nature Communications.

[66]  Sahel Ashhab,et al.  Observation of Floquet States in a Strongly Driven Artificial Atom. , 2015, Physical review letters.

[67]  T. Gudmundsen,et al.  Thermal and Residual Excited-State Population in a 3D Transmon Qubit. , 2014, Physical review letters.

[68]  Steven M. Girvin,et al.  Circuit QED: Superconducting Qubits Coupled to Microwave Photons , 2015 .

[69]  F. R. Ong,et al.  Flux qubits in a planar circuit quantum electrodynamics architecture: Quantum control and decoherence , 2014, 1407.1346.

[70]  S. Ferrari,et al.  Author contributions , 2021 .