The Gaia-ESO Survey: a new approach to chemically characterising young open clusters

Context. Open clusters are recognised as excellent tracers of Galactic thin-disc properties. At variance with intermediate-age and old open clusters, for which a significant number of studies is now available, clusters younger than ≲150 Myr have been mostly overlooked in terms of their chemical composition until recently (with few exceptions). On the other hand, previous investigations seem to indicate an anomalous behaviour of young clusters, which includes (but is not limited to) slightly sub-solar iron (Fe) abundances and extreme, unexpectedly high barium (Ba) enhancements. Aims. In a series of papers, we plan to expand our understanding of this topic and investigate whether these chemical peculiarities are instead related to abundance analysis techniques. Methods. We present a new determination of the atmospheric parameters for 23 dwarf stars observed by the Gaia-ESO survey in five young open clusters (τ < 150 Myr) and one star-forming region (NGC 2264). We exploit a new method based on titanium (Ti) lines to derive the spectroscopic surface gravity, and most importantly, the microturbulence parameter. A combination of Ti and Fe lines is used to obtain effective temperatures. We also infer the abundances of Fe I, Fe II, Ti I, Ti II, Na I, Mg I, Al I, Si I, Ca I, Cr I, and Ni I. Results. Our findings are in fair agreement with Gaia-ESO iDR5 results for effective temperatures and surface gravities, but suggest that for very young stars, the microturbulence parameter is over-estimated when Fe lines are employed. This affects the derived chemical composition and causes the metal content of very young clusters to be under-estimated. Conclusions. Our clusters display a metallicity [Fe/H] between +0.04 ± 0.01 and +0.12 ± 0.02; they are not more metal poor than the Sun. Although based on a relatively small sample size, our explorative study suggests that we may not need to call for ad hoc explanations to reconcile the chemical composition of young open clusters with Galactic chemical evolution models.

[1]  E. Dalessandro,et al.  Stellar population astrophysics (SPA) with the TNG , 2019, Astronomy & Astrophysics.

[2]  D. Lorenzo-Oliveira,et al.  The effect of stellar activity on the spectroscopic stellar parameters of the young solar twin HIP 36515 , 2019, Monthly Notices of the Royal Astronomical Society: Letters.

[3]  F. Anders,et al.  OCCASO – III. Iron peak and α elements of 18 open clusters. Comparison with chemical evolution models and field stars , 2019, Monthly notices of the Royal Astronomical Society.

[4]  M. Tsantaki,et al.  On the iron ionization balance of cool stars , 2019, Monthly Notices of the Royal Astronomical Society.

[5]  M. Tsantaki,et al.  Abundance to age ratios in the HARPS-GTO sample with Gaia DR2 , 2019, Astronomy & Astrophysics.

[6]  D. Bossini,et al.  Open clusters in APOGEE and GALAH , 2019, Astronomy & Astrophysics.

[7]  D. A. García-Hernández,et al.  The Open Cluster Chemical Abundances and Mapping Survey. II. Precision Cluster Abundances for APOGEE Using SDSS DR14 , 2018, The Astronomical Journal.

[8]  Ulrike Heiter,et al.  The Gaia FGK Benchmark Stars Version 2.1 , 2018, Research Notes of the AAS.

[9]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: the origin and evolution of s-process elements , 2018, Astronomy & Astrophysics.

[10]  R. Carrera,et al.  A Gaia DR2 view of the open cluster population in the Milky Way , 2018, Astronomy & Astrophysics.

[11]  Jeffrey D. Crane,et al.  Radial velocity variability and stellar properties of FGK stars in the cores of NGC 2516 and NGC 2422 , 2018 .

[12]  G. Carraro,et al.  The Gaia-ESO Survey and CSI 2264: Substructures, disks, and sequential star formation in the young open cluster NGC 2264 , 2017, 1709.03178.

[13]  D. Lambert,et al.  Solar Twins and the Barium Puzzle , 2017, 1707.07051.

[14]  A. Vigan,et al.  Spectral and atmospheric characterization of 51 Eridani b using VLT/SPHERE , 2017, 1704.02987.

[15]  A. Bragaglia,et al.  The Gaia-ESO Survey: radial distribution of abundances in the Galactic disc from open clusters and young-field stars , 2017, 1703.00762.

[16]  A. Klutsch,et al.  The Gaia-ESO Survey: The present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters , 2017, 1702.03461.

[17]  L. Girardi,et al.  A NEW GENERATION OF PARSEC-COLIBRI STELLAR ISOCHRONES INCLUDING THE TP-AGB PHASE , 2017, 1701.08510.

[18]  V. D’Orazi,et al.  First determination of s -process element abundances in pre-main sequence clusters: Y, Zr, La, and Ce in IC 2391, the Argus association, and IC 2602 , 2016, 1612.06406.

[19]  Sergei Nayakshin,et al.  Dawes Review 7: The Tidal Downsizing Hypothesis of Planet Formation , 2016, Publications of the Astronomical Society of Australia.

[20]  Antonino Francesco Lanza,et al.  A critical reassessment of the fundamental properties of GJ 504: Chemical composition and age , 2016, 1609.02530.

[21]  D. O. Astronomy,et al.  The evolution of the Milky Way: New insights from open clusters , 2016, 1609.02619.

[22]  A. Bragaglia,et al.  TheGaia-ESO Survey: Probes of the inner disk abundance gradient , 2016, Astronomy &amp; Astrophysics.

[23]  C. Prieto,et al.  Chemical abundance gradients from open clusters in the Milky Way disk: Results from the APOGEE survey , 2016, 1601.03099.

[24]  T. Fusco,et al.  First light of the VLT planet finder SPHERE: I. Detection and characterization of the substellar companion GJ 758 B , 2015, 1511.04076.

[25]  C. Soubiran,et al.  On the metallicity of open clusters. III. Homogenised sample , 2015, 1511.08884.

[26]  V. D’Orazi,et al.  Photometric and spectroscopic study of the intermediate-age open cluster ngc 2355* , 2015, 1508.05100.

[27]  The University of Texas at Austin,et al.  Local associations and the barium puzzle , 2015, 1508.02815.

[28]  V. Adibekyan,et al.  Gaia FGK benchmark stars: abundances of α and iron-peak elements , 2015, 1507.00027.

[29]  E. Gurtovenko,et al.  Formation depths of Fraunhofer lines , 2015, 1505.00975.

[30]  S. G. Sousa,et al.  ARES v2 - new features and improved performance , 2015, 1504.02725.

[31]  C. Babusiaux,et al.  Gaia-ESO Survey: Analysis of pre-main sequence stellar spectra , 2015, 1501.04450.

[32]  G. Carraro,et al.  New insights on Ba overabundance in open clusters. Evidence for the intermediate neutron-capture process at play? , 2014, 1411.1422.

[33]  L. Amard,et al.  The Evolution of Surface Magnetic Fields in Young Solar-type Stars , 2013, Proceedings of the International Astronomical Union.

[34]  L. Pasquini,et al.  The Gaia-ESO Survey: the analysis of high-resolution UVES spectra of FGK-type stars , 2014, 1409.0568.

[35]  J. Bean,et al.  18 Sco: A SOLAR TWIN RICH IN REFRACTORY AND NEUTRON-CAPTURE ELEMENTS. IMPLICATIONS FOR CHEMICAL TAGGING , 2014, 1406.5244.

[36]  V. Adibekyan,et al.  The Gaia-ESO survey: metallicity of the chamaeleon i star-forming region , 2014, 1406.2548.

[37]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: the first abundance determination of the pre-main-sequence cluster gamma Velorum , 2014, 1405.6586.

[38]  C. Babusiaux,et al.  The Gaia-ESO Survey: processing FLAMES-UVES spectra , 2014 .

[39]  U. Heiter,et al.  The Gaia FGK benchmark stars - High resolution spectral library , 2014, 1403.3090.

[40]  U. Heiter,et al.  On the metallicity of open clusters - II. Spectroscopy , 2013, 1311.2306.

[41]  D. O. Astronomy,et al.  Exploring the Milky Way stellar disk - A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood , 2013, 1309.2631.

[42]  J. Lawler,et al.  IMPROVED log(gf) VALUES FOR LINES OF Ti i AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937 (ACCURATE TRANSITION PROBABILITIES FOR Ti i) , 2013 .

[43]  E. Friel,et al.  ZIRCONIUM, BARIUM, LANTHANUM, AND EUROPIUM ABUNDANCES IN OPEN CLUSTERS , 2013, 1303.4283.

[44]  V. D’Orazi,et al.  Search for associations containing young stars: chemical tagging IC 2391 and the Argus association , 2013, 1301.5967.

[45]  C. Chiappini,et al.  Chemodynamical evolution of the Milky Way disk - I. The solar vicinity , 2012, 1208.1506.

[46]  C. Fischer,et al.  Multiconfiguration Dirac-Hartree-Fock energy levels and transition probabilities for W xxxviii , 2012 .

[47]  Sergio Ortolani,et al.  The Gaia-ESO Public Spectroscopic Survey , 2012 .

[48]  S. Randich,et al.  NEWS ON THE s PROCESS FROM YOUNG OPEN CLUSTERS , 2011, 1112.5290.

[49]  D. Turner The Color-Magnitude Diagram of NGC 2264 , 2011, 1112.5455.

[50]  S. Randich,et al.  s-PROCESSING IN THE GALACTIC DISK. I. SUPER-SOLAR ABUNDANCES OF Y, Zr, La, AND Ce IN YOUNG OPEN CLUSTERS , 2011, 1105.2208.

[51]  S. Shectman,et al.  THE ABUNDANCES OF NEUTRON-CAPTURE SPECIES IN THE VERY METAL-POOR GLOBULAR CLUSTER M15: A UNIFORM ANALYSIS OF RED GIANT BRANCH AND RED HORIZONTAL BRANCH STARS , 2011, 1103.1008.

[52]  M. Bergemann Ionization balance of Ti in the photospheres of the Sun and four late-type stars , 2011, 1101.0828.

[53]  K. Biazzo,et al.  Chemical composition of the Taurus-Auriga association , 2010, 1012.0848.

[54]  Italy.,et al.  Chemical pattern across the young associations ONC and OB1b , 2010, 1010.1658.

[55]  M. Pinsonneault,et al.  Fe I and Fe II Abundances of Solar-Type Dwarfs in the Pleiades Open Cluster , 2010, 1005.3619.

[56]  Phillip A. Cargile,et al.  EMPLOYING A NEW, BVIc PHOTOMETRIC SURVEY OF IC 4665 TO INVESTIGATE THE AGE OF THIS YOUNG OPEN CLUSTER , 2010, 1005.3329.

[57]  L. Casagrande,et al.  An absolutely calibrated effective temperature scale from the InfraRed Flux Method , 2010, 1001.3142.

[58]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[59]  V. D’Orazi,et al.  Chemical composition of the young open clusters IC 2602 and IC 2391 , 2009, 0905.1835.

[60]  N. Santos,et al.  Search for associations containing young stars (SACY) - II. Chemical abundances of stars in 11 young associations in the solar neighborhood , 2009, 0904.1221.

[61]  F. V. Leeuwen,et al.  Parallaxes and proper motions for 20 open clusters as based on the new Hipparcos catalogue , 2009, 0902.1039.

[62]  Italy.,et al.  ENHANCED PRODUCTION OF BARIUM IN LOW-MASS STARS: EVIDENCE FROM OPEN CLUSTERS , 2009, 0901.2743.

[63]  L. Hillenbrand,et al.  Improved Age Estimation for Solar-Type Dwarfs Using Activity-Rotation Diagnostics , 2008, 0807.1686.

[64]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[65]  Y. Liu,et al.  ABUNDANCE PATTERN OF METAL-RICH STARS FROM 14 OLD AND 24 YOUNG STARS , 2008 .

[66]  D. James,et al.  Chemical abundances in six nearby star-forming regions. Implications for galactic evolution and plan , 2008, 0801.2529.

[67]  Tim Naylor Rob Jeffries,et al.  A maximum likelihood method for fitting colour-magnitude diagrams , 2006, astro-ph/0609764.

[68]  E. Masana,et al.  Effective temperature scale and bolometric corrections from 2MASS photometry , 2006, astro-ph/0601049.

[69]  D. James,et al.  Fundamental properties of pre-main sequence stars in young, southern star forming regions: metallicities , 2005, astro-ph/0510596.

[70]  Astrophysics,et al.  Spectroscopic Abundance Analysis of Dwarfs in the Young Open Cluster IC 4665 , 2005, astro-ph/0508387.

[71]  M. Bessell,et al.  The Initial Mass Function and Young Brown Dwarf Candidates in NGC 2264. I. The Initial Mass Function around S Monocerotis , 2004 .

[72]  John R. Stauffer,et al.  Spectroscopy of Very Low Mass Stars and Brown Dwarfs in IC 2391: Lithium Depletion and Hα Emission , 2004 .

[73]  Alexander Brown,et al.  The Future of Cool-Star Astrophysics , 2003 .

[74]  Wm. A. Wheaton,et al.  2MASS All Sky Catalog of point sources. , 2003 .

[75]  M. Pinsonneault,et al.  Rotation and Activity in the Solar-Metallicity Open Cluster NGC 2516 , 2002, astro-ph/0205300.

[76]  D. Soderblom,et al.  Spectroscopic Abundances in Cool Pleiades Dwarfs and NGC 2264 Stars , 2000 .

[77]  Paul Barklem,et al.  A list of data for the broadening of metallic lines by neutral hydrogen collisions , 2000 .

[78]  J. R. Stauffer,et al.  The Lithium-Depletion Boundary and the Age of the Young Open Cluster IC 2391 , 1999, astro-ph/9907007.

[79]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[80]  E. D. Friel,et al.  The Old Open Clusters of the Milky Way , 1995 .

[81]  H. Gail,et al.  Abundances of the elements in the solar system , 2009, 0901.1149.