Braiding operators are universal quantum gates

This paper explores the role of unitary braiding operators in quantum computing. We show that a single specific solution R (the Bell basis change matrix) of the Yang–Baxter equation is a universal gate for quantum computing, in the presence of local unitary transformations. We show that this same R generates a new non-trivial invariant of braids, knots and links. Other solutions of the Yang–Baxter equation are also shown to be universal for quantum computation. The paper discusses these results in the context of comparing quantum and topological points of view. In particular, we discuss quantum computation of link invariants, the relationship between quantum entanglement and topological entanglement, and the structure of braiding in a topological quantum field theory.

[1]  H. Briegel,et al.  Computational Model for the One‐Way Quantum Computer: Concepts and Summary , 2002, quant-ph/0207183.

[2]  I. Markov,et al.  Recognizing small-circuit structure in two-qubit operators , 2003, quant-ph/0308045.

[3]  Louis H. Kauffman,et al.  Entanglement criteria: quantum and topological , 2003, SPIE Defense + Commercial Sensing.

[4]  H. Dye Unitary Solutions to the Yang–Baxter Equation in Dimension Four , 2002, Quantum Inf. Process..

[5]  M. Rasetti,et al.  Spin network quantum simulator , 2002, quant-ph/0209016.

[6]  Samuel J. Lomonaco Quantum Computation , 2002 .

[7]  A. Harrow,et al.  Practical scheme for quantum computation with any two-qubit entangling gate. , 2002, Physical review letters.

[8]  L. Kauffman,et al.  Quantum entanglement and topological entanglement , 2002, quant-ph/0205137.

[9]  Samuel J. Lomonaco,et al.  Quantum Computation: A Grand Mathematical Challenge for the Twenty-First Century and the Millennium: American Mathematical Challenge Society, Short Course, January 17-18, 2000, Washington, DC , 2002 .

[10]  Goong Chen,et al.  Mathematics of Quantum Computation , 2002 .

[11]  M. Freedman,et al.  Simulation of Topological Field Theories¶by Quantum Computers , 2000, quant-ph/0001071.

[12]  Howard E. Brandt,et al.  Quantum computation and information : AMS Special Session Quantum Computation and Information, January 19-21, 2000, Washington, D.C. , 2002 .

[13]  河野 俊丈 Conformal field theory and topology , 2002 .

[14]  M. Freedman,et al.  A Magnetic Model with a Possible Chern-Simons Phase , 2001, quant-ph/0110060.

[15]  Samuel J. Lomonaco,et al.  An Entangled Tale of Quantum Entanglement , 2001, quant-ph/0101120.

[16]  M. Freedman Quantum Computation and the Localization of Modular Functors , 2000, Found. Comput. Math..

[17]  Jr.,et al.  A Rosetta Stone for Quantum Mechanics with an Introduction to Quantum Computation , 2000, quant-ph/0007045.

[18]  Michael Larsen,et al.  A Modular Functor Which is Universal¶for Quantum Computation , 2000, quant-ph/0001108.

[19]  Charles H. Bennett,et al.  Quantum information and computation , 1995, Nature.

[20]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[21]  Lov K. Grover,et al.  Quantum computation , 1999, Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013).

[22]  A. Sudbery,et al.  Non-local properties of multi-particle density matrices , 1998, quant-ph/9801076.

[23]  Louis H. Kauffman,et al.  Quantum Topology and Quantum Computing , 1999 .

[24]  S. Popescu,et al.  Multi-particle entanglement , 1997, quant-ph/9711016.

[25]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[26]  C. Rourke,et al.  Markov's theorem in 3-manifolds , 1997, math/0405498.

[27]  Daniel A. Lidar,et al.  SIMULATING ISING SPIN GLASSES ON A QUANTUM COMPUTER , 1996, quant-ph/9611038.

[28]  Abner Shimony,et al.  Potentiality, entanglement and passion-at-a-distance , 1997 .

[29]  P. K. Aravind Borromean Entanglement of the GHZ State , 1997 .

[30]  J. Dubochet,et al.  Geometry and physics of knots , 1996, Nature.

[31]  V. Prasolov,et al.  Knots, links, braids and 3-manifolds , 1996 .

[32]  L. Kauffman The Interface of Knots and Physics , 1996 .

[33]  J. Barrett,et al.  Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds , 1994 .

[34]  D. Meyer State models for link invariants from the classical Lie groups , 1992 .

[35]  L. Crane 2-d physics and 3-d topology , 1991 .

[36]  Frank Wilczek,et al.  Fractional statistics and anyon superconductivity , 1990 .

[37]  M. Atiyah The geometry and physics of knots: Frontmatter , 1990 .

[38]  Edward Witten,et al.  Quantum field theory and the Jones polynomial , 1989 .

[39]  G. Moore,et al.  Classical and quantum conformal field theory , 1989 .

[40]  Louis H. Kauffman,et al.  State Models and the Jones Polynomial , 1987 .

[41]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[42]  V. Jones A polynomial invariant for knots via von Neumann algebras , 1985 .

[43]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[44]  J. Birman Braids, Links, and Mapping Class Groups. , 1975 .

[45]  H. Brown,et al.  Computational Problems in Abstract Algebra , 1971 .

[46]  C. Yang Some Exact Results for the Many-Body Problem in one Dimension with Repulsive Delta-Function Interaction , 1967 .

[47]  W. Heitler The Principles of Quantum Mechanics , 1947, Nature.

[48]  H. S. Allen The Quantum Theory , 1928, Nature.