Braiding operators are universal quantum gates
暂无分享,去创建一个
[1] H. Briegel,et al. Computational Model for the One‐Way Quantum Computer: Concepts and Summary , 2002, quant-ph/0207183.
[2] I. Markov,et al. Recognizing small-circuit structure in two-qubit operators , 2003, quant-ph/0308045.
[3] Louis H. Kauffman,et al. Entanglement criteria: quantum and topological , 2003, SPIE Defense + Commercial Sensing.
[4] H. Dye. Unitary Solutions to the Yang–Baxter Equation in Dimension Four , 2002, Quantum Inf. Process..
[5] M. Rasetti,et al. Spin network quantum simulator , 2002, quant-ph/0209016.
[6] Samuel J. Lomonaco. Quantum Computation , 2002 .
[7] A. Harrow,et al. Practical scheme for quantum computation with any two-qubit entangling gate. , 2002, Physical review letters.
[8] L. Kauffman,et al. Quantum entanglement and topological entanglement , 2002, quant-ph/0205137.
[9] Samuel J. Lomonaco,et al. Quantum Computation: A Grand Mathematical Challenge for the Twenty-First Century and the Millennium: American Mathematical Challenge Society, Short Course, January 17-18, 2000, Washington, DC , 2002 .
[10] Goong Chen,et al. Mathematics of Quantum Computation , 2002 .
[11] M. Freedman,et al. Simulation of Topological Field Theories¶by Quantum Computers , 2000, quant-ph/0001071.
[12] Howard E. Brandt,et al. Quantum computation and information : AMS Special Session Quantum Computation and Information, January 19-21, 2000, Washington, D.C. , 2002 .
[13] 河野 俊丈. Conformal field theory and topology , 2002 .
[14] M. Freedman,et al. A Magnetic Model with a Possible Chern-Simons Phase , 2001, quant-ph/0110060.
[15] Samuel J. Lomonaco,et al. An Entangled Tale of Quantum Entanglement , 2001, quant-ph/0101120.
[16] M. Freedman. Quantum Computation and the Localization of Modular Functors , 2000, Found. Comput. Math..
[17] Jr.,et al. A Rosetta Stone for Quantum Mechanics with an Introduction to Quantum Computation , 2000, quant-ph/0007045.
[18] Michael Larsen,et al. A Modular Functor Which is Universal¶for Quantum Computation , 2000, quant-ph/0001108.
[19] Charles H. Bennett,et al. Quantum information and computation , 1995, Nature.
[20] I. Chuang,et al. Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.
[21] Lov K. Grover,et al. Quantum computation , 1999, Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013).
[22] A. Sudbery,et al. Non-local properties of multi-particle density matrices , 1998, quant-ph/9801076.
[23] Louis H. Kauffman,et al. Quantum Topology and Quantum Computing , 1999 .
[24] S. Popescu,et al. Multi-particle entanglement , 1997, quant-ph/9711016.
[25] W. Wootters. Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.
[26] C. Rourke,et al. Markov's theorem in 3-manifolds , 1997, math/0405498.
[27] Daniel A. Lidar,et al. SIMULATING ISING SPIN GLASSES ON A QUANTUM COMPUTER , 1996, quant-ph/9611038.
[28] Abner Shimony,et al. Potentiality, entanglement and passion-at-a-distance , 1997 .
[29] P. K. Aravind. Borromean Entanglement of the GHZ State , 1997 .
[30] J. Dubochet,et al. Geometry and physics of knots , 1996, Nature.
[31] V. Prasolov,et al. Knots, links, braids and 3-manifolds , 1996 .
[32] L. Kauffman. The Interface of Knots and Physics , 1996 .
[33] J. Barrett,et al. Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds , 1994 .
[34] D. Meyer. State models for link invariants from the classical Lie groups , 1992 .
[35] L. Crane. 2-d physics and 3-d topology , 1991 .
[36] Frank Wilczek,et al. Fractional statistics and anyon superconductivity , 1990 .
[37] M. Atiyah. The geometry and physics of knots: Frontmatter , 1990 .
[38] Edward Witten,et al. Quantum field theory and the Jones polynomial , 1989 .
[39] G. Moore,et al. Classical and quantum conformal field theory , 1989 .
[40] Louis H. Kauffman,et al. State Models and the Jones Polynomial , 1987 .
[41] D. Deutsch. Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[42] V. Jones. A polynomial invariant for knots via von Neumann algebras , 1985 .
[43] R. Baxter. Exactly solved models in statistical mechanics , 1982 .
[44] J. Birman. Braids, Links, and Mapping Class Groups. , 1975 .
[45] H. Brown,et al. Computational Problems in Abstract Algebra , 1971 .
[46] C. Yang. Some Exact Results for the Many-Body Problem in one Dimension with Repulsive Delta-Function Interaction , 1967 .
[47] W. Heitler. The Principles of Quantum Mechanics , 1947, Nature.
[48] H. S. Allen. The Quantum Theory , 1928, Nature.