InP HBT Technologies for THz Integrated Circuits

Highly scaled indium phosphide (InP) heterojunction bipolar transistor (HBT) technologies have been demonstrated with maximum frequencies of oscillation ( $f_{\max}$ ) of >1 THz and circuit operation has been extended into the lower end of the terahertz (THz) frequency band. InP HBTs offer high radio-frequency (RF) output power density, millivolt (mV) threshold uniformity, and high levels of integration. Integration with multilevel thin-film wiring permits the realization of compact and complex THz monolithic integrated circuits (TMICs). Circuit results reported from InP HBT technologies include: 200-mW power amplifiers at 210 GHz, 670-GHz amplifiers and fundamental oscillators, and fully integrated 600-GHz transmitter circuits. We review the state of the art in THz-capable InP HBT devices and integrated circuit (IC) technologies. Challenges in extending transistor bandwidth and in circuit design at THz frequencies will also be addressed.

[1]  S. P. Watkins,et al.  InP/GaAsSb/InP double HBTs: a new alternative for InP-based DHBTs , 2001 .

[2]  Milton Feng,et al.  Advanced Process and Modeling on 600+ GHz Emitter Ledge Type-II GaAsSb/InP DHBT , 2014, 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[3]  Osaake Nakajima,et al.  Self-aligned AlGaAs/GaAs HBT with low emitter resistance utilizing InGaAs cap layer , 1988 .

[4]  M. J. W. Rodwell,et al.  Lower limits to specific contact resistivity , 2012, 2012 International Conference on Indium Phosphide and Related Materials.

[5]  Zach Griffith,et al.  A 180mW InP HBT Power Amplifier MMIC at 214 GHz , 2013, 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[6]  D. Mensa,et al.  Advanced InP DHBT process for high speed LSI circuits , 2008, 2008 20th International Conference on Indium Phosphide and Related Materials.

[7]  W. Deal,et al.  First Demonstration of Amplification at 1 THz Using 25-nm InP High Electron Mobility Transistor Process , 2015, IEEE Electron Device Letters.

[8]  Wayne Yoshida,et al.  A 0.85 THz Low Noise Amplifier Using InP HEMT Transistors , 2015, IEEE Microwave and Wireless Components Letters.

[9]  Z. Griffith,et al.  InP HBT Integrated Circuit Technology for Terahertz Frequencies , 2010, 2010 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[10]  V. Radisic,et al.  THz Monolithic Integrated Circuits Using InP High Electron Mobility Transistors , 2011, IEEE Transactions on Terahertz Science and Technology.

[11]  V. Jain,et al.  130nm InP DHBTs with ft >0.52THz and fmax >1.1THz , 2011, 69th Device Research Conference.

[12]  P. Asbeck,et al.  Large-signal HBT model with improved collector transit time formulation for GaAs and InP technologies , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[13]  Vesna Radisic,et al.  50 mW 220 GHz InP HBT power amplifier MMIC , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[14]  Zach Griffith,et al.  A 227.5GHz InP HBT SSPA MMIC with 101mW Pout at 14.0dB Compressed Gain and 4.04% PAE , 2013, 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[15]  M. Urteaga,et al.  A Prescription for Sub-Millimeter-Wave Transistor Characterization , 2013, IEEE Transactions on Terahertz Science and Technology.

[16]  M. Urteaga,et al.  340 GHz Integrated Receiver in 250 nm InP DHBT Technology , 2012, IEEE Transactions on Terahertz Science and Technology.

[17]  Jeffrey L. Hesler,et al.  Broadband tunable supra-THz test sources , 2015, 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz).

[18]  Z. Griffith,et al.  Multi-finger 250nm InP HBTs for 220GHz mm-wave power , 2012, 2012 International Conference on Indium Phosphide and Related Materials.

[19]  D.L. Miller,et al.  AlGaAs/GaAs heterojunction bipolar transistors fabricated using a self-aligned dual-lift-off process , 1987, IEEE Electron Device Letters.

[20]  Zach Griffith,et al.  340-440mW Broadband, High-Efficiency E-Band PA's in InP HBT , 2015, 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[21]  Munkyo Seo,et al.  THz MMICs based on InP HBT Technology , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[22]  Mark J. W. Rodwell,et al.  InGaAs/InP DHBTs with emitter and base defined through electron‐beam lithography for reduced Ccb and increased RF cut‐off frequency , 2013 .

[23]  Mark J. W. Rodwell,et al.  Millimeter-Wave Series Power Combining Using Sub-Quarter-Wavelength Baluns , 2014, IEEE Journal of Solid-State Circuits.

[24]  P. Chevalier,et al.  A 55 nm triple gate oxide 9 metal layers SiGe BiCMOS technology featuring 320 GHz fT / 370 GHz fMAX HBT and high-Q millimeter-wave passives , 2014, 2014 IEEE International Electron Devices Meeting.

[25]  Herbert Zirath,et al.  Design and Characterization of $H$-Band (220–325 $~$GHz) Amplifiers in a 250-nm InP DHBT Technology , 2014, IEEE Transactions on Terahertz Science and Technology.

[26]  Ho-Jin Song,et al.  50-Gb/s Direct Conversion QPSK Modulator and Demodulator MMICs for Terahertz Communications at 300 GHz , 2014, IEEE Transactions on Microwave Theory and Techniques.

[27]  M. Urteaga,et al.  300 GHz Integrated Heterodyne Receiver and Transmitter With On-Chip Fundamental Local Oscillator and Mixers , 2015, IEEE Transactions on Terahertz Science and Technology.

[28]  Vibhor Jain,et al.  SiGe HBTs in 90nm BiCMOS Technology Demonstrating fT/fMAX 285GHz/475GHz through Simultaneous Reduction of Base Resistance and Extrinsic Collector Capacitance , 2014 .

[29]  Mark J. W. Rodwell,et al.  High doping effects on in-situ Ohmic contacts to n-InAs , 2010, 2010 22nd International Conference on Indium Phosphide and Related Materials (IPRM).

[30]  Cristell Maneux,et al.  InP HBT Thermal Management by Transferring to High Thermal Conductivity Silicon Substrate , 2014, IEEE Electron Device Letters.

[31]  JOHANN C. RODE,et al.  An InGaAs / InP DHBT With Simultaneous f τ / fmax 404 / 901 GHz and 4 . 3 V Breakdown Voltage , 2014 .

[32]  Munkyo Seo,et al.  InP HBT IC Technology for Terahertz Frequencies: Fundamental Oscillators Up to 0.57 THz , 2011, IEEE Journal of Solid-State Circuits.

[33]  Hideaki Matsuzaki,et al.  Improvement of High-Frequency Characteristics of InGaAsSb-Base Double Heterojunction Bipolar Transistors by Inserting a Highly Doped GaAsSb Base Contact Layer , 2015, IEEE Electron Device Letters.

[34]  W. Deal,et al.  Low Noise Amplification at 0.67 THz Using 30 nm InP HEMTs , 2011, IEEE Microwave and Wireless Components Letters.

[35]  Mark J. W. Rodwell,et al.  Indium Phosphide Heterobipolar Transistor Technology Beyond 1-THz Bandwidth , 2015, IEEE Transactions on Electron Devices.

[36]  M. Urteaga,et al.  A 220 GHz InP HBT Solid-State Power Amplifier MMIC with 90mW POUT at 8.2dB Compressed Gain , 2012, 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[37]  Vibhor Jain,et al.  1.0 THz fmax InP DHBTs in a refractory emitter and self-aligned base process for reduced base access resistance , 2011, 69th Device Research Conference.

[38]  Zach Griffith,et al.  A 23.2dBm at 210GHz to 21.0dBm at 235GHz 16-Way PA-Cell Combined InP HBT SSPA MMIC , 2014, 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[39]  V. Radisic,et al.  Power Amplification at 0.65 THz Using InP HEMTs , 2012, IEEE Transactions on Microwave Theory and Techniques.

[40]  W. Deal,et al.  Sub 50 nm InP HEMT Device with Fmax Greater than 1 THz , 2007, 2007 IEEE International Electron Devices Meeting.

[41]  Richard Lai,et al.  220-GHz Solid-State Power Amplifier Modules , 2012, IEEE Journal of Solid-State Circuits.

[42]  Mark J. W. Rodwell,et al.  Optimization of direct current performance in terahertz InGaAs/InP double-heterojunction bipolar transistors , 2014 .

[43]  Y. Baeyens,et al.  Highly Efficient Harmonically Tuned InP D-HBT Push-Push Oscillators Operating up to 287 GHz , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[44]  Munkyo Seo,et al.  A 600 GHz InP HBT amplifier using cross-coupled feedback stabilization and dual-Differential Power Combining , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[45]  A. Leuther,et al.  A 600 GHz low-noise amplifier module , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[46]  T. Ishibashi,et al.  Nonequilibrium electron transport in HBTs , 2001 .

[47]  K. Aufinger,et al.  SiGe HBT and BiCMOS process integration optimization within the DOTSEVEN project , 2015, 2015 IEEE Bipolar/BiCMOS Circuits and Technology Meeting - BCTM.

[48]  M. Chen,et al.  AlInAs/GaInAs/InP double heterojunction bipolar transistor with a novel base-collector design for power applications , 1996, IEEE Electron Device Letters.

[49]  M. Seo,et al.  A single-chip 630 GHz transmitter with 210 GHz sub-harmonic PLL local oscillator in 130 nm InP HBT , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[50]  Kazuhiko Hosomi,et al.  Novel self-aligned sub-micron emitter InP/InGaAs HBT's using T-shaped emitter electrode , 1995, Seventh International Conference on Indium Phosphide and Related Materials.

[51]  V. Radisic,et al.  InP HBT Transferred to Higher Thermal Conductivity Substrate , 2012, IEEE Electron Device Letters.

[52]  Chih-Ming Hung,et al.  A 410GHz CMOS Push-Push Oscillator with an On-Chip Patch Antenna , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[53]  InP HBT Technologies for THz Integrated Circuits This paper describes the operation and scaling of InP heterojunction bipolar transistors ( HBTs ) to terahertz frequencies , .

[54]  Zach Griffith,et al.  A 6–10 mW Power Amplifier at 290–307.5 GHz in 250 nm InP HBT , 2015, IEEE Microwave and Wireless Components Letters.

[55]  Munkyo Seo,et al.  A 300 GHz PLL in an InP HBT technology , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[56]  Peter Chen,et al.  50-nm E-mode In0.7Ga0.3As PHEMTs on 100-mm InP substrate with fmax > 1 THz , 2010, 2010 International Electron Devices Meeting.

[57]  Vesna Radisic,et al.  InP HBT transferred substrate amplifiers operating to 600 GHz , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[58]  H. P. Moyer,et al.  GaN Technology for E, W and G-Band Applications , 2014, 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[59]  Zach Griffith,et al.  A 50–80mW SSPA from 190.8–244GHz at 0.5mW Pin , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[60]  William Liu Handbook of III-V Heterojunction Bipolar Transistors , 1998 .

[61]  Munkyo Seo,et al.  A 305–330+ GHz 2:1 Dynamic Frequency Divider Using InP HBTs , 2010, IEEE Microwave and Wireless Components Letters.

[62]  Mark J. W. Rodwell,et al.  Submicron scaling of HBTs , 2001 .

[63]  R. Lachner,et al.  A SiGe Monolithically Integrated 278 GHz Push-Push Oscillator , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[64]  Herbert Zirath,et al.  InP DHBT Amplifier Modules Operating Between 150–300 GHz Using Membrane Technology , 2015, IEEE Transactions on Microwave Theory and Techniques.

[65]  Z. Griffith,et al.  Sub-300 nm InGaAs/InP Type-I DHBTs with a 150 nm collector, 30 nm base demonstrating 755 GHz fmax and 416 GHz fT , 2007, 2007 IEEE 19th International Conference on Indium Phosphide & Related Materials.

[66]  Munkyo Seo,et al.  InP HBT amplifier MMICs operating to 0.67 THz , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[67]  Po-Hsin Liu,et al.  A 10-mW Submillimeter-Wave Solid-State Power-Amplifier Module , 2010, IEEE Transactions on Microwave Theory and Techniques.

[68]  Mau-Chung Frank Chang,et al.  324GHz CMOS Frequency Generator Using Linear Superposition Technique , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[69]  C. Wipf,et al.  SiGe HBT with fx/fmax of 505 GHz/720 GHz , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[70]  H.J. Zhu,et al.  GaAsSb-based HBTs grown by production MBE system , 2004, 16th IPRM. 2004 International Conference on Indium Phosphide and Related Materials, 2004..

[71]  J.F. Prairie,et al.  Self-aligned InP DHBT with f/sub /spl tau// and f/sub max/ over 300 GHz in a new manufacturable technology , 2004, IEEE Electron Device Letters.

[72]  Munkyo Seo,et al.  A 529 GHz dynamic frequency divider in 130 nm InP HBT process , 2015, IEICE Electron. Express.

[73]  H. Kazemi,et al.  350mW G-band medium power amplifier fabricated through a new method of 3D-copper additive manufacturing , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[74]  O. Ambacher,et al.  35 nm mHEMT Technology for THz and ultra low noise applications , 2013, 2013 International Conference on Indium Phosphide and Related Materials (IPRM).

[75]  Mark J. W. Rodwell,et al.  An InGaAs/InP DHBT With Simultaneous $\text{f}_{\boldsymbol \tau }/\text{f}_{\text {max}}~404/901$ GHz and 4.3 V Breakdown Voltage , 2015, IEEE Journal of the Electron Devices Society.

[76]  C. R. Bolognesi,et al.  InP/GaAsSb DHBTs for THz applications and improved extraction of their cutoff frequencies , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[77]  Keisuke Shinohara,et al.  Scaling of GaN HEMTs and Schottky Diodes for Submillimeter-Wave MMIC Applications , 2013, IEEE Transactions on Electron Devices.

[78]  Mark J. W. Rodwell,et al.  InP Bipolar ICs: Scaling Roadmaps, Frequency Limits, Manufacturable Technologies , 2008, Proceedings of the IEEE.

[79]  V. Radisic,et al.  220-GHz High-Efficiency InP HBT Power Amplifiers , 2014, IEEE Transactions on Microwave Theory and Techniques.

[80]  N. Kukutsu,et al.  Fully Integrated ASK Receiver MMIC for Terahertz Communications at 300 GHz , 2013, IEEE Transactions on Terahertz Science and Technology.

[81]  Jinho Jeong,et al.  H-Band Power Amplifier Integrated Circuits Using 250-nm InP HBT Technology , 2015, IEEE Transactions on Terahertz Science and Technology.

[82]  Hideaki Matsuzaki,et al.  Over 450-GHz ft and fmax InP/InGaAs DHBTs With a Passivation Ledge Fabricated by Utilizing SiN/SiO2 Sidewall Spacers , 2014, IEEE Transactions on Electron Devices.

[83]  A. Leuther,et al.  Submillimeter-Wave Amplifier Circuits Based on Thin Film Microstrip Line Front-Side Technology , 2015, 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[84]  Maria Alexandrova,et al.  Type-II InP/GaAsSb double-heterojunction bipolar transistors with fMAX > 700 GHz , 2014 .

[85]  Munkyo Seo,et al.  A 220-225.9 GHz InP HBT Single-Chip PLL , 2011, 2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[86]  J.A.M. Geelen,et al.  An improved de-embedding technique for on-wafer high-frequency characterization , 1991, Proceedings of the 1991 Bipolar Circuits and Technology Meeting.

[87]  A. Natarajan,et al.  Device and circuit performance of SiGe HBTs in 130nm BiCMOS process with fT/fMAX of 250/330GHz , 2014, 2014 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM).

[88]  W. Yoshida,et al.  InP HEMT integrated circuits operating above 1,000 GHz , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[89]  Herbert Zirath,et al.  A Compact 340 GHz 2x4 Patch Array with Integrated Subharmonic Gilber Core Mixer as a Building Block for Multi-Pixel Imaging Frontends , 2014, 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).