Mathematical analysis on affine maps for 2D shape interpolation

This paper gives a simple mathematical framework for 2D shape interpolation methods that preserve rigidity. An interpolation technique in this framework works for given the source and target 2D shapes, which are compatibly triangulated. Focusing on the local affine maps between the corresponding triangles, we describe a global transformation as a piecewise affine map. Several existing rigid shape interpolation techniques are discussed and mathematically analyzed through this framework. This gives us not only a useful comprehensive understanding of existing approaches, but also new algorithms and a few improvements of previous approaches.

[1]  Marc Alexa,et al.  As-rigid-as-possible shape interpolation , 2000, SIGGRAPH.

[2]  Takeo Igarashi,et al.  As-rigid-as-possible shape manipulation , 2005, ACM Trans. Graph..

[3]  Tom Duff,et al.  Matrix animation and polar decomposition , 1992 .

[4]  Olga Sorkine-Hornung,et al.  Bounded biharmonic weights for real-time deformation , 2011, Commun. ACM.

[5]  Jovan Popović,et al.  Mesh-based inverse kinematics , 2005, SIGGRAPH 2005.

[6]  William V. Baxter,et al.  Rigid shape interpolation using normal equations , 2008, NPAR.

[7]  Hujun Bao,et al.  Poisson shape interpolation , 2006, Graph. Model..

[8]  François X. Sillion,et al.  Proceedings of the 6th international symposium on Non-photorealistic animation and rendering , 2008 .

[9]  William V. Baxter,et al.  Compatible Embedding for 2D Shape Animation , 2009, IEEE Transactions on Visualization and Computer Graphics.

[10]  Michael Werman,et al.  Similarity and Affine Invariant Distances Between 2D Point Sets , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Marc Alexa,et al.  Linear combination of transformations , 2002, ACM Trans. Graph..

[12]  Takeo Igarashi,et al.  Implementing As-Rigid-As-Possible Shape Manipulation and Surface Flattening , 2009, J. Graphics, GPU, & Game Tools.

[13]  Takeo Igarashi,et al.  As-rigid-as-possible shape manipulation , 2005, SIGGRAPH '05.

[14]  Olga Sorkine-Hornung,et al.  On Linear Variational Surface Deformation Methods , 2008, IEEE Transactions on Visualization and Computer Graphics.