Sparsity- and continuity-promoting seismic image recovery with curvelet frames
暂无分享,去创建一个
[1] William W. Symes,et al. Reverse time migration with optimal checkpointing , 2007 .
[2] F. Herrmann,et al. Non-linear primary-multiple separation with directional curvelet frames , 2007 .
[3] Laurent Demanet,et al. Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..
[4] Felix J. Herrmann,et al. Seismic denoising with nonuniformly sampled curvelets , 2006, Computing in Science & Engineering.
[5] J. Tropp. Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.
[6] D. Donoho,et al. Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .
[7] E. Candès,et al. Continuous curvelet transform: II. Discretization and frames , 2005 .
[8] Lexing Ying,et al. 3D discrete curvelet transform , 2005, SPIE Optics + Photonics.
[9] E. Candès,et al. Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.
[10] A. Guitton. Amplitude and kinematic corrections of migrated images for nonunitary imaging operators , 2004 .
[11] R. Plessix,et al. Frequency-domain finite-difference amplitude-preserving migration , 2004 .
[12] E. Candès,et al. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .
[13] Felix J. Herrmann,et al. Multifractional splines: application to seismic imaging , 2003, SPIE Optics + Photonics.
[14] Robert D. Nowak,et al. An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..
[15] I. Daubechies,et al. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.
[16] J. Rickett. Illumination-based normalization for wave-equation depth migration , 2003 .
[17] G. Fehmers,et al. Fast structural interpretation with structure-oriented filteringStructure-Oriented Filtering , 2003 .
[18] M. Sacchi,et al. Least‐squares wave‐equation migration for AVP/AVA inversion , 2003 .
[19] Sverre Brandsberg-Dahl,et al. Focusing in dip and AVA compensation on scattering‐angle/azimuth common image gathers , 2003 .
[20] Christiaan C. Stolk,et al. Smooth objective functionals for seismic velocity inversion , 2003 .
[21] Emmanuel J. Candès,et al. New multiscale transforms, minimum total variation synthesis: applications to edge-preserving image reconstruction , 2002, Signal Process..
[22] E. Candès,et al. Recovering edges in ill-posed inverse problems: optimality of curvelet frames , 2002 .
[23] Gijs C. Fehmers,et al. Fast structural interpretation with structure-oriented filtering , 2002 .
[24] G. Schuster,et al. Poststack migration deconvolutionPoststack Migration Deconvolution , 2001 .
[25] G. Schuster,et al. Prestack migration deconvolution , 2001 .
[26] Christiaan C. Stolk,et al. Microlocal analysis of a seismic linearized inverse problem , 2000 .
[27] M. D. Hoop,et al. Maslov asymptotic extension of generalized Radon transform inversion in anisotropic elastic media: a least-squares approach , 2000 .
[28] Gerard T. Schuster,et al. Poststack Migration Deconvolution , 1999 .
[29] G. Chavent,et al. An optimal true-amplitude least-squares prestack depth-migration operator , 1999 .
[30] G. Schuster,et al. Least-squares migration of incomplete reflection data , 1999 .
[31] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[32] A. P. E. ten Kroode,et al. A microlocal analysis of migration , 1998 .
[33] Guillermo Sapiro,et al. Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..
[34] Maarten V. de Hoop,et al. Generalized Radon transform inversions for reflectivity in anisotropic elastic media , 1997 .
[35] D. Donoho. Nonlinear Solution of Linear Inverse Problems by Wavelet–Vaguelette Decomposition , 1995 .
[36] L. Schumaker,et al. Curves and Surfaces , 1991 .
[37] William W. Symes,et al. Velocity inversion by differential semblance optimization , 1991 .
[38] G. Beylkin. The inversion problem and applications of the generalized radon transform , 1984 .
[39] Michael A. Saunders,et al. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.
[40] J. Claerbout,et al. Robust Modeling With Erratic Data , 1973 .
[41] Michael Elad,et al. Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.
[42] Yaakov Tsaig,et al. Extensions of compressed sensing , 2006, Signal Process..
[43] D. Donoho,et al. Redundant Multiscale Transforms and Their Application for Morphological Component Separation , 2004 .
[44] E. Candès,et al. Continuous Curvelet Transform : I . Resolution of the Wavefront Set , 2003 .
[45] Otmar Scherzer,et al. Scale-Space Methods and Regularization for Denoising and Inverse Problems , 2003 .
[46] B. Krauskopf,et al. Proc of SPIE , 2003 .
[47] E. Candès,et al. Continuous curvelet transform , 2003 .
[48] Nam-Yong Lee,et al. Wavelet methods for inverting the Radon transform with noisy data , 2001, IEEE Trans. Image Process..
[49] Jack K. Cohen,et al. Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion , 2001 .
[50] E. Candès,et al. Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .
[51] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[52] Samuel H. Gray,et al. Can we image beneath salt , 1996 .