Sparsity- and continuity-promoting seismic image recovery with curvelet frames

[1]  William W. Symes,et al.  Reverse time migration with optimal checkpointing , 2007 .

[2]  F. Herrmann,et al.  Non-linear primary-multiple separation with directional curvelet frames , 2007 .

[3]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[4]  Felix J. Herrmann,et al.  Seismic denoising with nonuniformly sampled curvelets , 2006, Computing in Science & Engineering.

[5]  J. Tropp Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[6]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[7]  E. Candès,et al.  Continuous curvelet transform: II. Discretization and frames , 2005 .

[8]  Lexing Ying,et al.  3D discrete curvelet transform , 2005, SPIE Optics + Photonics.

[9]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[10]  A. Guitton Amplitude and kinematic corrections of migrated images for nonunitary imaging operators , 2004 .

[11]  R. Plessix,et al.  Frequency-domain finite-difference amplitude-preserving migration , 2004 .

[12]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[13]  Felix J. Herrmann,et al.  Multifractional splines: application to seismic imaging , 2003, SPIE Optics + Photonics.

[14]  Robert D. Nowak,et al.  An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..

[15]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[16]  J. Rickett Illumination-based normalization for wave-equation depth migration , 2003 .

[17]  G. Fehmers,et al.  Fast structural interpretation with structure-oriented filteringStructure-Oriented Filtering , 2003 .

[18]  M. Sacchi,et al.  Least‐squares wave‐equation migration for AVP/AVA inversion , 2003 .

[19]  Sverre Brandsberg-Dahl,et al.  Focusing in dip and AVA compensation on scattering‐angle/azimuth common image gathers , 2003 .

[20]  Christiaan C. Stolk,et al.  Smooth objective functionals for seismic velocity inversion , 2003 .

[21]  Emmanuel J. Candès,et al.  New multiscale transforms, minimum total variation synthesis: applications to edge-preserving image reconstruction , 2002, Signal Process..

[22]  E. Candès,et al.  Recovering edges in ill-posed inverse problems: optimality of curvelet frames , 2002 .

[23]  Gijs C. Fehmers,et al.  Fast structural interpretation with structure-oriented filtering , 2002 .

[24]  G. Schuster,et al.  Poststack migration deconvolutionPoststack Migration Deconvolution , 2001 .

[25]  G. Schuster,et al.  Prestack migration deconvolution , 2001 .

[26]  Christiaan C. Stolk,et al.  Microlocal analysis of a seismic linearized inverse problem , 2000 .

[27]  M. D. Hoop,et al.  Maslov asymptotic extension of generalized Radon transform inversion in anisotropic elastic media: a least-squares approach , 2000 .

[28]  Gerard T. Schuster,et al.  Poststack Migration Deconvolution , 1999 .

[29]  G. Chavent,et al.  An optimal true-amplitude least-squares prestack depth-migration operator , 1999 .

[30]  G. Schuster,et al.  Least-squares migration of incomplete reflection data , 1999 .

[31]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[32]  A. P. E. ten Kroode,et al.  A microlocal analysis of migration , 1998 .

[33]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[34]  Maarten V. de Hoop,et al.  Generalized Radon transform inversions for reflectivity in anisotropic elastic media , 1997 .

[35]  D. Donoho Nonlinear Solution of Linear Inverse Problems by Wavelet–Vaguelette Decomposition , 1995 .

[36]  L. Schumaker,et al.  Curves and Surfaces , 1991 .

[37]  William W. Symes,et al.  Velocity inversion by differential semblance optimization , 1991 .

[38]  G. Beylkin The inversion problem and applications of the generalized radon transform , 1984 .

[39]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[40]  J. Claerbout,et al.  Robust Modeling With Erratic Data , 1973 .

[41]  Michael Elad,et al.  Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.

[42]  Yaakov Tsaig,et al.  Extensions of compressed sensing , 2006, Signal Process..

[43]  D. Donoho,et al.  Redundant Multiscale Transforms and Their Application for Morphological Component Separation , 2004 .

[44]  E. Candès,et al.  Continuous Curvelet Transform : I . Resolution of the Wavefront Set , 2003 .

[45]  Otmar Scherzer,et al.  Scale-Space Methods and Regularization for Denoising and Inverse Problems , 2003 .

[46]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[47]  E. Candès,et al.  Continuous curvelet transform , 2003 .

[48]  Nam-Yong Lee,et al.  Wavelet methods for inverting the Radon transform with noisy data , 2001, IEEE Trans. Image Process..

[49]  Jack K. Cohen,et al.  Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion , 2001 .

[50]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[51]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[52]  Samuel H. Gray,et al.  Can we image beneath salt , 1996 .