Optimal Filtering of Jump Diffusions: Extracting Latent States from Asset Prices

This paper provides an optimal filtering methodology in discretely observed continuous-time jump-diffusion models. Although the filtering problem has received little attention, it is useful for estimating latent states, forecasting volatility and returns, computing model diagnostics such as likelihood ratios, and parameter estimation. Our approach combines time-discretization schemes with Monte Carlo methods. It is quite general, applying in nonlinear and multivariate jump-diffusion models and models with nonanalytic observation equations. We provide a detailed analysis of the filter's performance, and analyze four applications: disentangling jumps from stochastic volatility, forecasting volatility, comparing models via likelihood ratios, and filtering using option prices and returns. The Author 2009. Published by Oxford University Press on behalf of The Society for Financial Studies. All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org, Oxford University Press.

[1]  E. Renshaw,et al.  STOCHASTIC DIFFERENTIAL EQUATIONS , 1974 .

[2]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[3]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Statistics of random processes , 1977 .

[4]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[5]  N. Kiefer Discrete Parameter Variation: Efficient Estimation of a Switching Regression Model , 1978 .

[6]  R. C. Merton,et al.  On Estimating the Expected Return on the Market: An Exploratory Investigation , 1980 .

[7]  S. Beckers A Note on Estimating the Parameters of the Diffusion-Jump Model of Stock Returns , 1981, Journal of Financial and Quantitative Analysis.

[8]  R. Jarrow,et al.  Jump Risks and the Intertemporal Capital Asset Pricing Model , 1984 .

[9]  Rolando Rebolledo,et al.  WEAK CONVERGENCE OF SEMIMARTINGALES AND DISCRETISATION METHODS , 1985 .

[10]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[11]  G. Kitagawa Non-Gaussian State—Space Modeling of Nonstationary Time Series , 1987 .

[12]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[13]  Eckhard Platen,et al.  Time Discrete Taylor Approximations for Itǒ Processes with Jump Component , 1988 .

[14]  Stephen J. Merrill Stochastic Differential Systems: Analysis and Filtering , 1989, SIAM Rev..

[15]  D. Duffie,et al.  Simulated Moments Estimation of Markov Models of Asset Prices , 1990 .

[16]  Alan E. Gelfand,et al.  Bayesian statistics without tears: A sampling-resampling perspective , 1992 .

[17]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[18]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[19]  Francis A. Longstaff,et al.  Bid-Ask Spreads and Trading Activity in the S&P 100 Index Options Market , 1993, Journal of Financial and Quantitative Analysis.

[20]  Dean P. Foster,et al.  Continuous Record Asymptotics for Rolling Sample Variance Estimators , 1994 .

[21]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[22]  Yacine Ait-Sahalia Testing Continuous-Time Models of the Spot Interest Rate , 1995 .

[23]  P. Glynn,et al.  Efficient Monte Carlo Simulation of Security Prices , 1995 .

[24]  Yacine Ait-Sahalia Testing Continuous-Time Models of the Spot Interest Rate , 1995 .

[25]  A. Pedersen A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations , 1995 .

[26]  Denis Talay,et al.  The law of the Euler scheme for stochastic differential equations , 1996, Monte Carlo Methods Appl..

[27]  Yacine Aït-Sahalia Nonparametric Pricing of Interest Rate Derivative Securities , 1996 .

[28]  A. Gallant,et al.  Estimating stochastic differential equations efficiently by minimum chi-squared , 1997 .

[29]  David S. Bates Post-&Apos;87 Crash Fears in S&P 500 Futures Options , 1997 .

[30]  Timothy G. Conley,et al.  Short-term interest rates as subordinated diffusions , 1997 .

[31]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[32]  M. Pritsker Nonparametric Density Estimation and Tests of Continuous Time Interest Rate Models , 1998 .

[33]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[34]  N. Shephard,et al.  Likelihood INference for Discretely Observed Non-linear Diffusions , 2001 .

[35]  R. Sundaram,et al.  Of Smiles and Smirks: A Term Structure Perspective , 1998, Journal of Financial and Quantitative Analysis.

[36]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options , 1998 .

[37]  P. Fearnhead,et al.  Improved particle filter for nonlinear problems , 1999 .

[38]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[39]  Simon,et al.  Bayesian Estimation of Continuous-Time Finance Models 1 Introduction , 1999 .

[40]  Nicholas G. Polson,et al.  The Impact of Jumps in Volatility and Returns , 2000 .

[41]  David S. Bates Post-'87 crash fears in the S&P 500 futures option market , 2000 .

[42]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[43]  Christopher S. Jones,et al.  Bayesian investigation of continuous -time finance models , 2000 .

[44]  X. Q. Liu,et al.  Weak Approximations and Extrapolations of Stochastic Differential Equations with Jumps , 2000, SIAM J. Numer. Anal..

[45]  Camilla Landén,et al.  Bond pricing in a hidden Markov model of the short rate , 2000, Finance Stochastics.

[46]  Michael W. Brandt,et al.  Simulated Likelihood Estimation of Diffusions with an Application to Exchange Rate Dynamics in Incomplete Markets , 2001 .

[47]  Jun Pan The jump-risk premia implicit in options: evidence from an integrated time-series study , 2001 .

[48]  Bjørn Eraker MCMC Analysis of Diffusion Models With Application to Finance , 2001 .

[49]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[50]  Luca Benzoni,et al.  An Empirical Investigation of Continuous-Time Equity Return Models , 2001 .

[51]  Jun Pan The Jump-Risk Premia Implicit in Options : Evidence from an Integrated Time-Series Study , 2001 .

[52]  Jun-Ping Liua,et al.  Dynamic Derivative Strategies , 2001 .

[53]  Jean Jacod,et al.  Interacting Particle Filtering With Discrete Observations , 2001, Sequential Monte Carlo Methods in Practice.

[54]  P. Protter,et al.  The Monte-Carlo method for filtering with discrete-time observations , 2001 .

[55]  Arnaud Doucet,et al.  A survey of convergence results on particle filtering methods for practitioners , 2002, IEEE Trans. Signal Process..

[56]  Sanjiv Ranjan Das,et al.  Systemic Risk and International Portfolio Choice , 2002 .

[57]  Geir Storvik,et al.  Particle filters for state-space models with the presence of unknown static parameters , 2002, IEEE Trans. Signal Process..

[58]  M. Pitt Smooth Particle Filters for Likelihood Evaluation and Maximisation , 2002 .

[59]  Yacine Ait-Sahalia Closed-Form Likelihood Expansions for Multivariate Diffusions , 2002, 0804.0758.

[60]  Jonathan R. Stroud,et al.  Sequential Optimal Portfolio Performance: Market and Volatility Timing , 2002 .

[61]  Yacine Ait-Sahalia,et al.  Estimating Affine Multifactor Term Structure Models Using Closed-Form Likelihood Expansions , 2002 .

[62]  Jun Liu,et al.  Dynamic Derivative Strategies , 2002 .

[63]  Yacine Aït-Sahalia Closed-Form Likelihood Expansions for Multivariate Diffusions , 2008 .

[64]  Yacine Aït-Sahalia Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed‐form Approximation Approach , 2002 .

[65]  Sanjiv Ranjan Das The Surprise Element: Jumps in Interest Rates , 2002 .

[66]  A. Gallant,et al.  Simulated Score Methods and Indirect Inference for Continuous-time Models , 2002 .

[67]  Erika Hausenblas,et al.  Error Analysis for Approximation of Stochastic Differential Equations Driven by Poisson Random Measures , 2002, SIAM J. Numer. Anal..

[68]  Jun Pan The jump-risk premia implicit in options: evidence from an integrated time-series study $ , 2002 .

[69]  Yacine Aït-Sahalia,et al.  Closed-Form Likelihood Expansions for Multivariate Diffusions , 2002 .

[70]  N. Shephard,et al.  Markov chain Monte Carlo methods for stochastic volatility models , 2002 .

[71]  Hao Zhou,et al.  Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes: Comment , 2002 .

[72]  David S. Bates,et al.  Maximum Likelihood Estimation of Latent Affine Processes , 2003 .

[73]  N. Shephard,et al.  Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation , 2005 .

[74]  Sylvain Rubenthaler,et al.  Numerical simulation of the solution of a stochastic differential equation driven by a Lévy process , 2003 .

[75]  Jun Liu,et al.  Dynamic Asset Allocation with Event Risk , 2003 .

[76]  Paul Glasserman,et al.  Numerical solution of jump-diffusion LIBOR market models , 2003, Finance Stochastics.

[77]  Garland B. Durham Likelihood-based specification analysis of continuous-time models of the short-term interest rate , 2003 .

[78]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[79]  N. Shephard,et al.  Power and bipower variation with stochastic volatility and jumps , 2003 .

[80]  Lan Zhang,et al.  A Tale of Two Time Scales , 2003 .

[81]  T. Andersen Stochastic Volatility , Mean Drift , and Jumps in the Short-Term Interest Rate , 2003 .

[82]  N. Shephard,et al.  Impact of jumps on returns and realised variances: econometric analysis of time-deformed Lévy processes , 2006 .

[83]  A. Gallant,et al.  Alternative models for stock price dynamics , 2003 .

[84]  Regime shifts in a dynamic term structure model of U.S. Treasury bond yields, comments , 2004 .

[85]  P. Glynn,et al.  Estimation of Continuous-Time Markov Processes Sampled at Random Time Intervals , 2004 .

[86]  M. Pitt,et al.  Likelihood based inference for diffusion driven models , 2004 .

[87]  Michael S. Johannes,et al.  The Statistical and Economic Role of Jumps in Continuous-Time Interest Rate Models , 2004 .

[88]  Dave Thomas,et al.  Practice , 2004, IEEE Softw..

[89]  Bjørn Eraker Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices , 2004 .

[90]  Yacine Aït-Sahalia,et al.  Disentangling diffusion from jumps , 2004 .

[91]  Siddhartha Chib,et al.  Stochastic Volatility with Leverage: Fast Likelihood Inference , 2004 .

[92]  Monika Piazzesi Bond Yields and the Federal Reserve , 2005, Journal of Political Economy.

[93]  Michael S. Johannes,et al.  Model Specification and Risk Premia: Evidence from Futures Options , 2005 .

[94]  George Tauchen,et al.  Cross-Stock Comparisons of the Relative Contribution of Jumps to Total Price Variance , 2012 .

[95]  Peter F. Christoffersen,et al.  An Empirical Comparison of Affine and Non-Affine Models for Equity Index Options , 2006 .

[96]  Nicholas G. Polson,et al.  Sequential Parameter Estimation in Stochastic Volatility Models with Jumps , 2006 .

[97]  Darren J. Wilkinson,et al.  Bayesian sequential inference for nonlinear multivariate diffusions , 2006, Stat. Comput..

[98]  Peter F. Christoffersen,et al.  Models for S&P 500 Dynamics: Evidence from Realized Volatility, Daily Returns, and Option Prices , 2007 .

[99]  Jean Jacod,et al.  Testing for Jumps in a Discretely Observed Process , 2007 .

[100]  F. Diebold,et al.  Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility , 2005, The Review of Economics and Statistics.

[101]  N. Shephard,et al.  Stochastic volatility with leverage: Fast and efficient likelihood inference , 2007 .

[102]  Jialin Yu Closed-form likelihood approximation and estimation of jump-diffusions with an application to the realignment risk of the Chinese Yuan , 2007 .

[103]  K. Singleton,et al.  Regime shifts in a dynamic term structure model of U.S. Treasury bond yields , 2007 .

[104]  Cindy L. Yu,et al.  A Bayesian Analysis of Return Dynamics with Lévy Jumps , 2008 .

[105]  Darren J. Wilkinson,et al.  Bayesian inference for nonlinear multivariate diffusion models observed with error , 2008, Comput. Stat. Data Anal..

[106]  Yacine Ait-Sahalia,et al.  Estimating Affine Multifactor Term Structure Models Using Closed-Form Likelihood Expansions , 2002 .

[107]  J. Jacod,et al.  Testing for Jumps in a Discretely Observed Process , 2009, 0903.0226.

[108]  Manuel Moreno,et al.  Statistical properties and economic implications of jump-diffusion processes with shot-noise effects , 2011, Eur. J. Oper. Res..

[109]  M. Aschwanden Statistics of Random Processes , 2021, Biomedical Measurement Systems and Data Science.