Synthesis of core-shell fishbone-like Cu@Ni composites and their electromagnetic wave absorption properties

[1]  Chao Ma,et al.  Hierarchical porous Ni@boehmite/nickel aluminum oxide flakes with enhanced microwave absorption ability. , 2017, Physical chemistry chemical physics : PCCP.

[2]  Rui Zhang,et al.  Facile design of a ZnO nanorod–Ni core–shell composite with dual peaks to tune its microwave absorption properties , 2017 .

[3]  G. Shi,et al.  Improved microwave absorption properties of core–shell type Ni@SiC nanocomposites , 2017, Journal of Materials Science: Materials in Electronics.

[4]  B. Fan,et al.  Yolk-Shell Ni@SnO2 Composites with a Designable Interspace To Improve the Electromagnetic Wave Absorption Properties. , 2016, ACS applied materials & interfaces.

[5]  Hongjing Wu,et al.  Multishelled Metal Oxide Hollow Spheres: Easy Synthesis and Formation Mechanism. , 2016, Chemistry.

[6]  Jingbo Chen,et al.  Microwave absorption properties of CoNi nanoparticles anchored on the reduced grapheme oxide , 2016, Journal of Materials Science: Materials in Electronics.

[7]  Jianguang Xu,et al.  Synthesis, Characterization, and Microwave Absorption Properties of Reduced Graphene Oxide/Strontium Ferrite/Polyaniline Nanocomposites , 2016, Nanoscale Research Letters.

[8]  Yana Li,et al.  Facile Hydrothermal Synthesis of Fe3O4/C Core-Shell Nanorings for Efficient Low-Frequency Microwave Absorption. , 2016, ACS applied materials & interfaces.

[9]  Jia-ling Wang,et al.  Combined use of lightweight magnetic Fe3O4-coated hollow glass spheres and electrically conductive reduced graphene oxide in an epoxy matrix for microwave absorption , 2016 .

[10]  Yongfeng Li,et al.  Synthesis and microwave absorption property of graphene oxide/carbon nanotubes modified with cauliflower-like Fe3O4 nanospheres , 2016, Applied Physics A.

[11]  Jingquan Liu,et al.  Controlled growth of Cu–Ni nanowires and nanospheres for enhanced microwave absorption properties , 2016, Nanotechnology.

[12]  Y. Wan,et al.  Microwave absorption properties of FeCo-coated carbon fibers with varying morphologies , 2016 .

[13]  Q. Xie,et al.  Morphology-controlled synthesis, characterization and microwave absorption properties of nanostructured 3D CeO2 , 2016 .

[14]  Yonghong Cheng,et al.  Synthesis and characterization of γ-Fe2O3@C nanorod-carbon sphere composite and its application as microwave absorbing material , 2015 .

[15]  B. Fan,et al.  In situ synthesis of novel urchin-like ZnS/Ni3S2@Ni composite with a core–shell structure for efficient electromagnetic absorption , 2015 .

[16]  Tingting Xu,et al.  Facile synthesis, photoluminescence properties and microwave absorption enhancement of porous and hollow ZnO spheres , 2015 .

[17]  B. Fan,et al.  Facile Synthesis of Novel Heterostructure Based on SnO2 Nanorods Grown on Submicron Ni Walnut with Tunable Electromagnetic Wave Absorption Capabilities. , 2015, ACS applied materials & interfaces.

[18]  Hongjing Wu,et al.  Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4–CoNiO2 hybrids , 2015 .

[19]  B. Fan,et al.  Morphology-Control Synthesis of a Core-Shell Structured NiCu Alloy with Tunable Electromagnetic-Wave Absorption Capabilities. , 2015, ACS applied materials & interfaces.

[20]  B. Fan,et al.  Facile synthesis of Ni/ZnO composite: Morphology control and microwave absorption properties , 2015 .

[21]  B. Fan,et al.  Preparation and electromagnetic wave absorption properties of novel dendrite-like NiCu alloy composite , 2015 .

[22]  Q. Xie,et al.  Facile synthesis of urchin-like ZnO hollow spheres with enhanced electromagnetic wave absorption properties , 2015 .

[23]  W. Cao,et al.  NiO hierarchical nanorings on SiC: enhancing relaxation to tune microwave absorption at elevated temperature. , 2015, ACS applied materials & interfaces.

[24]  Q. Cao,et al.  Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography. , 2015, Nanoscale.

[25]  Hongjing Wu,et al.  Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties , 2015 .

[26]  B. Fan,et al.  Preparation and electromagnetic wave absorption of chain-like CoNi by a hydrothermal route , 2014 .

[27]  Hongjing Wu,et al.  Facile synthesis and microwave absorbability of C@Ni–NiO core–shell hybrid solid sphere and multi-shelled NiO hollow sphere , 2014 .

[28]  Y. Liu,et al.  Facile synthesis of novel cobalt particles by reduction method and their microwave absorption properties , 2014 .

[29]  Jun Ma,et al.  Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. , 2014, ACS applied materials & interfaces.

[30]  Anilesh Kumar,et al.  Cu–Ni alloy decorated graphite layers for EMI suppression , 2014 .

[31]  Feng-sheng Li,et al.  Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption. , 2014, Nanoscale.

[32]  Yan Wang,et al.  Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. , 2014, Nanoscale.

[33]  K. Forooraghi,et al.  Microwave absorption property of aligned MWCNT/Fe3O4 , 2013 .

[34]  N. Zhang,et al.  Synthesis of hierarchical dendritic micro-nano structure CoxFe1−x alloy with tunable electromagnetic absorption performance , 2013 .

[35]  W. Choi,et al.  Nanostructured graphene/Fe₃O₄ incorporated polyaniline as a high performance shield against electromagnetic pollution. , 2013, Nanoscale.

[36]  Jinglin Zhang,et al.  Template-free synthesis and characterization of leaf-like Fe-Ni microstructures , 2013 .

[37]  Tao Wang,et al.  Laminated magnetic graphene with enhanced electromagnetic wave absorption properties , 2013 .

[38]  Shaoli Guo,et al.  Enhanced microwave performance of highly ordered mesoporous carbon coated by Ni2O3 nanoparticles , 2012 .

[39]  Shaoli Guo,et al.  Electromagnetic and microwave-absorbing properties of highly ordered mesoporous carbon supported by gold nanoparticles , 2012 .

[40]  H. Qian,et al.  Flower-like Co superstructures: Morphology and phase evolution mechanism and novel microwave electromagnetic characteristics , 2012 .

[41]  Y. Wan,et al.  Facile synthesis and electromagnetic wave absorption properties of magnetic carbon fiber coated with Fe–Co alloy by electroplating , 2011 .

[42]  Y. Wada,et al.  Nucleation and Growth of Magnetic Ni−Co (Core−Shell) Nanoparticles in a One-Pot Reaction under Microwave Irradiation , 2011 .

[43]  H. Zeng,et al.  Solution-Based Epitaxial Growth of Magnetically Responsive Cu@Ni Nanowires , 2010 .

[44]  Jie Yuan,et al.  Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability , 2009 .

[45]  M. Fuji,et al.  A New Model for the Synthesis of Hollow Particles via the Bubble Templating Method , 2009 .

[46]  Wei Liu,et al.  Dual nonlinear dielectric resonance and strong natural resonance in Ni/ZnO nanocapsules , 2009 .

[47]  Desheng Kong,et al.  Nickel Chains Assembled by Hollow Microspheres and Their Magnetic Properties , 2008 .

[48]  Falong Jia,et al.  Non‐Aqueous Sol–Gel Approach towards the Controllable Synthesis of Nickel Nanospheres, Nanowires, and Nanoflowers , 2008 .

[49]  X. G. Zhu,et al.  Microwave absorption properties of the core/shell-type iron and nickel nanoparticles , 2008 .

[50]  Huolin Huang,et al.  Microstructure and microwave absorption properties of carbon-coated iron nanocapsules , 2007 .

[51]  L. Deng,et al.  Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability , 2007 .

[52]  W. Pan,et al.  Electrospinning of Fe, Co, and Ni Nanofibers: Synthesis, Assembly, and Magnetic Properties , 2007 .

[53]  M. Vázquez,et al.  Microwave absorption of nanoscale CoNi powders , 2006 .

[54]  G. Kurlyandskaya,et al.  Ferromagnetic Resonance in selected nanostructural materials designed for technological applications , 2005, cond-mat/0501449.

[55]  P. Watts,et al.  High Permittivity from Defective Multiwalled Carbon Nanotubes in the X‐Band , 2003 .