InGaN-based solar cells for space applications

III-nitrides InGaN solar cells have exhibited many favorable physical properties for space photovoltaic (PV) applications. Here we demonstrate the first nonpolar and semipolar InGaN/GaN multiple-quantum-well (MQW) solar cells grown on nonpolar m-plane and semipolar (2021) plane bulk GaN substrates. The optical properties and PV performance of these InGaN solar cells were systematically studied, including the absorption spectra, current density-voltage (J-V) characteristics, external quantum efficiency (EQE), and internal quantum efficiency (IQE). Overall nonpolar m-plane InGaN/GaN MQW solar cells demonstrated the best performance across all devices, with a high open-circuit voltage and the highest EQE and IQE. This huge difference is attributed to the better carrier transport and collection on nonpolar m-plane devices due to the reduced polarization effects, which were further confirmed by bias-dependent EQE measurements. Furthermore, high temperature measurements reveal that peak EQE values exceeds 80% at 500 °C and a positive thermal power coefficient up to 350 °C for nonpolar m-plane solar cells. These results demonstrate the high potential of nonpolar and semipolar InGaN solar cells for high temperature PV applications, which are required for space missions close to the sun.

[1]  Cohen,et al.  Theory of electron band tails and the Urbach optical-absorption edge. , 1986, Physical review letters.

[2]  T. Mizutani,et al.  Urbach-Martienssen tails in a wurtzite GaN epilayer , 1997 .

[3]  Eugene E. Haller,et al.  Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system , 2003 .

[4]  A. Uedono,et al.  Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors , 2006, Nature materials.

[5]  Ian T. Ferguson,et al.  Design and characterization of GaN∕InGaN solar cells , 2007 .

[6]  Umesh K. Mishra,et al.  High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap , 2008 .

[7]  Enrico Bellotti,et al.  Monte Carlo study of GaN versus GaAs terahertz quantum cascade structures , 2008 .

[8]  Rajendra Dahal,et al.  InGaN/GaN multiple quantum well solar cells with long operating wavelengths , 2009 .

[9]  K. Katayama,et al.  531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar {202̄1} Free-Standing GaN Substrates , 2009 .

[10]  Ray-Hua Horng,et al.  Improved Conversion Efficiency of GaN/InGaN Thin-Film Solar Cells , 2009, IEEE Electron Device Letters.

[11]  Jing Li,et al.  InGaN/GaN multiple quantum well concentrator solar cells , 2010 .

[12]  S. Denbaars,et al.  Observation of positive thermal power coefficient in InGaN/GaN quantum well solar cells , 2011 .

[13]  James S. Speck,et al.  Effect of doping and polarization on carrier collection in InGaN quantum well solar cells , 2011 .

[14]  W. Lour,et al.  Cell-Temperature Determination in InGaP–(In)GaAs–Ge Triple-Junction Solar Cells , 2011, IEEE Electron Device Letters.

[15]  D. C. Law,et al.  Band gap‐voltage offset and energy production in next‐generation multijunction solar cells , 2011 .

[16]  James S. Speck,et al.  High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm , 2011 .

[17]  Nicolas Grandjean,et al.  Two-color GaN/AlGaN quantum cascade detector at short infrared wavelengths of 1 and 1.7 μm , 2012 .

[18]  Shota Yamamoto,et al.  Properties of nitride‐based photovoltaic cells under concentrated light illumination , 2012 .

[19]  S. Denbaars,et al.  Influence of polarity on carrier transport in semipolar (2021¯) and (202¯1) multiple-quantum-well light-emitting diodes , 2012 .

[20]  S. Denbaars,et al.  Effect of quantum well cap layer thickness on the microstructure and performance of InGaN/GaN solar cells , 2012 .

[21]  James S. Speck,et al.  High performance thin quantum barrier InGaN/GaN solar cells on sapphire and bulk (0001) GaN substrates , 2013 .

[22]  S. Denbaars,et al.  Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays , 2013 .

[23]  John E. Bowers,et al.  High-performance broadband optical coatings on InGaN/GaN solar cells for multijunction device integration , 2014 .

[24]  C. Wetzel,et al.  High 400 °C operation temperature blue spectrum concentration solar junction in GaInN/GaN , 2014 .

[25]  J. Speck,et al.  Valence band states and polarized optical emission from nonpolar and semipolar III–nitride quantum well optoelectronic devices , 2014 .

[26]  L. Sang,et al.  InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties , 2015 .

[27]  Li-Wei Tu,et al.  Conversion Efficiency Improvement of InGaN/GaN Multiple-Quantum-Well Solar Cells With Ex Situ AlN Nucleation Layer , 2015, IEEE Transactions on Electron Devices.

[28]  High temperature characterization of GaAs single junction solar cells , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[29]  Zhijian Lu,et al.  Crystal orientation dependent intersubband transition in semipolar AlGaN/GaN single quantum well for optoelectronic applications , 2016 .

[30]  Xiaodong Wang,et al.  Positive temperature coefficient of photovoltaic efficiency in solar cells based on InGaN/GaN MQWs , 2016 .

[31]  H. Chen,et al.  Analysis of loss mechanisms in InGaN solar cells using a semi-analytical model , 2016, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC).

[32]  James S. Speck,et al.  Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture , 2016 .

[33]  M. Steiner,et al.  Measurements and Modeling of III-V Solar Cells at High Temperatures up to 400 ${}^{\circ}$C , 2016, IEEE Journal of Photovoltaics.

[34]  Zhijian Lu,et al.  Optical properties of highly polarized InGaN light-emitting diodes modified by plasmonic metallic grating. , 2016, Optics express.