Bigger is not always better: transmission and fitness burden of ∼1MB Pseudomonas syringae megaplasmid pMPPla107.

[1]  J. Galagan,et al.  Resource Competition May Lead to Effective Treatment of Antibiotic Resistant Infections , 2013, PloS one.

[2]  J. Paulsson,et al.  New quantitative methods for measuring plasmid loss rates reveal unexpected stability. , 2013, Plasmid.

[3]  R. MacLean,et al.  Positive epistasis between co-infecting plasmids promotes plasmid survival in bacterial populations , 2013, The ISME Journal.

[4]  T. Proft,et al.  Toxin–antitoxin-stabilized reporter plasmids for biophotonic imaging of Group A streptococcus , 2013, Applied Microbiology and Biotechnology.

[5]  Wilfried Rozhon,et al.  Toxin–antitoxin systems , 2013, Mobile genetic elements.

[6]  Thomas Backhaus,et al.  Human Health Risk Assessment (HHRA) for Environmental Development and Transfer of Antibiotic Resistance , 2013, Environmental health perspectives.

[7]  K. Nielsen,et al.  Fitness costs of various mobile genetic elements in Enterococcus faecium and Enterococcus faecalis , 2013, The Journal of antimicrobial chemotherapy.

[8]  J. Marchesi,et al.  Mobile genetic elements of the human gastrointestinal tract , 2013, Gut microbes.

[9]  W. Hess,et al.  Toxin-Antitoxin Systems on the Large Defense Plasmid pSYSA of Synechocystis sp. PCC 6803* , 2013, The Journal of Biological Chemistry.

[10]  E. Koonin,et al.  Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer , 2012, Biology Direct.

[11]  C. William Keevil,et al.  Horizontal Transfer of Antibiotic Resistance Genes on Abiotic Touch Surfaces: Implications for Public Health , 2012, mBio.

[12]  Young Cheol Kim,et al.  Comparative Genomics of Plant-Associated Pseudomonas spp.: Insights into Diversity and Inheritance of Traits Involved in Multitrophic Interactions , 2012, PLoS genetics.

[13]  M. S. Mukhtar,et al.  The molecular basis of host specialization in bean pathovars of Pseudomonas syringae. , 2012, Molecular plant-microbe interactions : MPMI.

[14]  M. Brockhurst,et al.  Plasmid-mediated horizontal gene transfer is a coevolutionary process. , 2012, Trends in microbiology.

[15]  J. Bever,et al.  A cooperative virulence plasmid imposes a high fitness cost under conditions that induce pathogenesis , 2012, Proceedings of the Royal Society B: Biological Sciences.

[16]  T. Xie,et al.  Identification of Genes That Promote or Antagonize Somatic Homolog Pairing Using a High-Throughput FISH–Based Screen , 2012, PLoS genetics.

[17]  Otto X. Cordero,et al.  Population Genomics of Early Events in the Ecological Differentiation of Bacteria , 2012, Science.

[18]  Jianzhi Zhang,et al.  High Expression Hampers Horizontal Gene Transfer , 2012, Genome biology and evolution.

[19]  M. Shahid Mukhtar,et al.  Dynamic Evolution of Pathogenicity Revealed by Sequencing and Comparative Genomics of 19 Pseudomonas syringae Isolates , 2011, PLoS pathogens.

[20]  Fernando de la Cruz,et al.  Mobility of Plasmids , 2010, Microbiology and Molecular Biology Reviews.

[21]  Daniel M. Stoebel,et al.  Waste and yet want not. , 2010, Molecular cell.

[22]  U. Alon,et al.  Cost of unneeded proteins in E. coli is reduced after several generations in exponential growth. , 2010, Molecular cell.

[23]  Philip J. Hatcher,et al.  Why Genes Evolve Faster on Secondary Chromosomes in Bacteria , 2010, PLoS Comput. Biol..

[24]  Sergei L. Kosakovsky Pond,et al.  Phylogenetic analysis of population-based and deep sequencing data to identify coevolving sites in the nef gene of HIV-1. , 2010, Molecular biology and evolution.

[25]  Zixin Deng,et al.  Pathogenicity Islands PAPI-1 and PAPI-2 Contribute Individually and Synergistically to the Virulence of Pseudomonas aeruginosa Strain PA14 , 2010, Infection and Immunity.

[26]  Omar E. Cornejo,et al.  The Population and Evolutionary Dynamics of Homologous Gene Recombination in Bacteria , 2009, PLoS genetics.

[27]  M. Whitlock,et al.  Compensatory mutations are repeatable and clustered within proteins , 2009, Proceedings of the Royal Society B: Biological Sciences.

[28]  J. Ponciano,et al.  Adaptive Plasmid Evolution Results in Host-Range Expansion of a Broad-Host-Range Plasmid , 2008, Genetics.

[29]  David A. Baltrus,et al.  Natural Transformation Increases the Rate of Adaptation in the Human Pathogen Helicobacter pylori , 2007, Evolution; international journal of organic evolution.

[30]  Paul Joyce,et al.  The Population Biology of Bacterial Plasmids: A Hidden Markov Model Approach , 2007, Genetics.

[31]  H. Heuer,et al.  Frequent conjugative transfer accelerates adaptation of a broad-host-range plasmid to an unfavorable Pseudomonas putida host. , 2007, FEMS microbiology ecology.

[32]  L. Forney,et al.  Region-Specific Insertion of Transposons in Combination with Selection for High Plasmid Transferability and Stability Accounts for the Structural Similarity of IncP-1 Plasmids , 2007, Journal of bacteriology.

[33]  P. Joyce,et al.  Stability of a promiscuous plasmid in different hosts: no guarantee for a long-term relationship. , 2007, Microbiology.

[34]  M. Lynch,et al.  On the formation of novel genes by duplication in the Caenorhabditis elegans genome. , 2006, Molecular biology and evolution.

[35]  D. Canfield,et al.  Community Composition of a Hypersaline Endoevaporitic Microbial Mat , 2005, Applied and Environmental Microbiology.

[36]  J. Townsend,et al.  Horizontal gene transfer, genome innovation and evolution , 2005, Nature Reviews Microbiology.

[37]  Kyong-Tai Kim,et al.  Highly efficient protein expression and purification using bacterial hemoglobin fusion vector. , 2005, Plasmid.

[38]  Elizabeth Pennisi,et al.  Researchers Trade Insights About Gene Swapping , 2004, Science.

[39]  Lotte Lambertsen,et al.  Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. , 2004, Environmental microbiology.

[40]  K. Timmis,et al.  Proteome reference map of Pseudomonas putida strain KT2440 for genome expression profiling: distinct responses of KT2440 and Pseudomonas aeruginosa strain PAO1 to iron deprivation and a new form of superoxide dismutase. , 2003, Environmental microbiology.

[41]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[42]  J. D. Díaz Ricci,et al.  Plasmid Effects on Escherichia coli Metabolism , 2000, Critical reviews in biotechnology.

[43]  M. G. Lorenz,et al.  Analysis of genotypic diversity and relationships among Pseudomonas stutzeri strains by PCR-based genomic fingerprinting and multilocus enzyme electrophoresis. , 1999, Systematic and applied microbiology.

[44]  H. Ochman,et al.  Molecular archaeology of the Escherichia coli genome. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[45]  R. Isberg,et al.  Conjugative transfer by the virulence system of Legionella pneumophila. , 1998, Science.

[46]  M. G. Lorenz,et al.  Natural genetic transformation of Pseudomonas stutzeri in a non-sterile soil. , 1998, Microbiology.

[47]  J R Roth,et al.  Selfish operons: horizontal transfer may drive the evolution of gene clusters. , 1996, Genetics.

[48]  D. Cuppels Generation and Characterization of Tn5 Insertion Mutations in Pseudomonas syringae pv. tomato , 1986, Applied and environmental microbiology.

[49]  M. Lipsitch,et al.  Secular trends in Helicobacter pylori seroprevalence in adults in the United States: evidence for sustained race/ethnic disparities. , 2012, American journal of epidemiology.

[50]  H. Schweizer,et al.  mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa , 2006, Nature Protocols.