Model Checking Strategic Abilities of Agents Under Incomplete Information

In this paper we introduce and study the complexity of model checking alternating-time temporal logic (atp) with imperfect information, using a fine-structured complexity measure. While atp model checking with perfect information is linear in the size of the model when the number of agents is considered fixed, this is no longer true when the number of agents is considered parameters of the problem (fine structure). Combining it with results from our previous papers, we get the surprising result that checking strategic abilities of agents under both perfect and imperfect information belong to the same complexity class: both problems are $\sum^P_{2}$-complete.

[1]  Amir Pnueli,et al.  Compositionality: The Significant Difference , 1999, Lecture Notes in Computer Science.

[2]  W. Penczek,et al.  A Sat-Based Approach to Unbounded Model Checking for Alternating-Time Temporal Epistemic Logic , 2004, Synthese.

[3]  W. Jamroga Some Remarks on Alternating Temporal Epistemic Logic , 2003 .

[4]  Thomas A. Henzinger,et al.  The Control of Synchronous Systems , 2000, CONCUR.

[5]  Wojciech Jamroga,et al.  Agents that Know How to Play , 2004, Fundam. Informaticae.

[6]  Thomas A. Henzinger,et al.  jMocha: a model checking tool that exploits design structure , 2001, Proceedings of the 23rd International Conference on Software Engineering. ICSE 2001.

[7]  Joseph Y. Halpern,et al.  "Sometimes" and "not never" revisited: on branching versus linear time (preliminary report) , 1983, POPL '83.

[8]  Kousha Etessami,et al.  Optimizing Büchi Automata , 2000, CONCUR.

[9]  Wojciech Penczek,et al.  Unbounded model checking for alternating-time temporal logic , 2004, Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004..

[10]  Jürgen Dix,et al.  Do Agents Make Model Checking Explode (Computationally)? , 2005, CEEMAS.

[11]  Geert Jonker,et al.  On Epistemic Temporal Strategic Logic , 2005, LCMAS.

[12]  Wojciech Jamroga,et al.  Comparing Semantics of Logics for Multi-Agent Systems , 2004, Synthese.

[13]  Joseph Y. Halpern,et al.  “Sometimes” and “not never” revisited: on branching versus linear time temporal logic , 1986, JACM.

[14]  Thomas A. Henzinger,et al.  The Control of Synchronous Systems, Part II , 2001, CONCUR.

[15]  Pierre-Yves Schobbens,et al.  Alternating-time logic with imperfect recall , 2004, LCMAS.

[16]  Michael Luck,et al.  A Direct Reputation Model for VO Formation , 2005, CEEMAS.

[17]  R. Milner,et al.  Bigraphical Reactive Systems , 2001, CONCUR.

[18]  Thomas A. Henzinger,et al.  Alternating-time temporal logic , 2002, JACM.

[19]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[20]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[21]  Michael Wooldridge,et al.  Tractable multiagent planning for epistemic goals , 2002, AAMAS '02.

[22]  V. Goranko Coalition games and alternating temporal logics , 2001 .

[23]  Thomas A. Henzinger,et al.  MOCHA: Modularity in Model Checking , 1998, CAV.

[24]  Michael Wooldridge,et al.  Cooperation, Knowledge, and Time: Alternating-time Temporal Epistemic Logic and its Applications , 2003, Stud Logica.