A Bidirectional Mendelian Randomization Study to evaluate the causal role of reduced blood vitamin D levels with type 2 diabetes risk in South Asians and Europeans

[1]  J. Ware,et al.  Vitamin D Supplementation and Prevention of Type 2 Diabetes. , 2019, The New England journal of medicine.

[2]  M. McCarthy,et al.  Association of vitamin D with risk of type 2 diabetes: A Mendelian randomisation study in European and Chinese adults , 2018, PLoS medicine.

[3]  Nicholette D. Palmer,et al.  Transethnic Evaluation Identifies Low-Frequency Loci Associated With 25-Hydroxyvitamin D Concentrations , 2018, The Journal of clinical endocrinology and metabolism.

[4]  D. Sanghera,et al.  Vitamin D Status, Gender Differences, and Cardiometabolic Health Disparities , 2017, Annals of Nutrition and Metabolism.

[5]  R. Lucas,et al.  Ultraviolet radiation, vitamin D and the development of obesity, metabolic syndrome and type-2 diabetes , 2017, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[6]  Cristian Pattaro,et al.  Mendelian Randomization as an Approach to Assess Causality Using Observational Data. , 2016, Journal of the American Society of Nephrology : JASN.

[7]  D. Sanghera,et al.  Genome-wide association study of 25(OH) Vitamin D concentrations in Punjabi Sikhs: Results of the Asian Indian diabetic heart study , 2016, The Journal of Steroid Biochemistry and Molecular Biology.

[8]  S. Sharp,et al.  Association between circulating 25-hydroxyvitamin D and incident type 2 diabetes: a mendelian randomisation study , 2015, The lancet. Diabetes & endocrinology.

[9]  S. Bojesen,et al.  Vitamin D concentration, obesity, and risk of diabetes: a mendelian randomisation study. , 2014, The lancet. Diabetes & endocrinology.

[10]  D. Bikle,et al.  Vitamin D metabolism, mechanism of action, and clinical applications. , 2014, Chemistry & biology.

[11]  J. Shaw,et al.  Global estimates of diabetes prevalence for 2013 and projections for 2035. , 2014, Diabetes Research and Clinical Practice.

[12]  H. DeLuca,et al.  CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo , 2013, Proceedings of the National Academy of Sciences.

[13]  J. Danesh,et al.  Genome-Wide Association Study Identifies a Novel Locus Contributing to Type 2 Diabetes Susceptibility in Sikhs of Punjabi Origin From India , 2013, Diabetes.

[14]  L. Been,et al.  Vitamin D Deficiency and Cardio-Metabolic Risk in a North Indian Community with Highly Prevalent Type 2 Diabetes. , 2012, Journal of diabetes & metabolism.

[15]  Dharambir K Sanghera,et al.  Type 2 Diabetes Genetics: Beyond GWAS. , 2012, Journal of diabetes & metabolism.

[16]  Tom Wilsgaard,et al.  Polymorphisms Related to the Serum 25-Hydroxyvitamin D Level and Risk of Myocardial Infarction, Diabetes, Cancer and Mortality. The Tromsø Study , 2012, PloS one.

[17]  N. Tandon,et al.  Vitamin D status in healthy Indians aged 50 years and above. , 2011, The Journal of the Association of Physicians of India.

[18]  J. Shaw,et al.  Serum 25-Hydroxyvitamin D, Calcium Intake, and Risk of Type 2 Diabetes After 5 Years , 2011, Diabetes Care.

[19]  V. Vaccarino,et al.  Heritability and seasonal variability of vitamin D concentrations in male twins. , 2010, The American journal of clinical nutrition.

[20]  Nicholette D. Palmer,et al.  Genome-wide association study of vitamin D concentrations in Hispanic Americans: The IRAS Family Study , 2010, The Journal of Steroid Biochemistry and Molecular Biology.

[21]  T. Frayling,et al.  C-reactive protein levels and body mass index: Elucidating direction of causation through reciprocal Mendelian randomization , 2010, International Journal of Obesity.

[22]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[23]  Ayellet V. Segrè,et al.  Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis , 2010, Nature Genetics.

[24]  Andrew D. Johnson,et al.  SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap , 2008, Bioinform..

[25]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[26]  W. Willett,et al.  Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. , 2006, The American journal of clinical nutrition.

[27]  S. Harris,et al.  Vitamin D and African Americans. , 2006, The Journal of nutrition.

[28]  M. Holick,et al.  Prevalence of Vitamin D inadequacy among postmenopausal North American women receiving osteoporosis therapy. , 2005, The Journal of clinical endocrinology and metabolism.

[29]  M. Sowers,et al.  Serum 25-hydroxyvitamin D, diabetes, and ethnicity in the Third National Health and Nutrition Examination Survey. , 2004, Diabetes care.

[30]  Liya Yan,et al.  Older people in China and the United Kingdom differ in the relationships among parathyroid hormone, vitamin D, and bone mineral status. , 2003, Bone.

[31]  S. Ebrahim,et al.  'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? , 2003, International journal of epidemiology.

[32]  F Vinicor,et al.  The continuing epidemics of obesity and diabetes in the United States. , 2001, JAMA.

[33]  J. Kooner,et al.  C-Reactive Protein, Insulin Resistance, Central Obesity, and Coronary Heart Disease Risk in Indian Asians From the United Kingdom Compared With European Whites , 2001, Circulation.

[34]  H. van den Berg,et al.  Serum vitamin D concentrations among elderly people in Europe , 1995, The Lancet.

[35]  M. Marmot,et al.  Relation of central obesity and insulin resistance with high diabetes prevalence and cardiovascular risk in South Asians , 1991, The Lancet.

[36]  D. Pyke,et al.  Diabetes in identical twins , 1981, Diabetologia.

[37]  P. Autier,et al.  Vitamin D status and ill health: a systematic review. , 2014, The lancet. Diabetes & endocrinology.

[38]  J. Stockman Common genetic determinants of vitamin D insufficiency: a genome-wide association study , 2012 .

[39]  Jonathan,et al.  Results from a national, population-based prospective study (The Australian Diabetes, Obesity and Lifestyle Study) , 2011 .

[40]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..