Optimizing Condition Numbers

In this paper we study the problem of minimizing condition numbers over a compact convex subset of the cone of symmetric positive semidefinite $n\times n$ matrices. We show that the condition number is a Clarke regular strongly pseudoconvex function. We prove that a global solution of the problem can be approximated by an exact or an inexact solution of a nonsmooth convex program. This asymptotic analysis provides a valuable tool for designing an implementable algorithm for solving the problem of minimizing condition numbers.

[1]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[2]  Adrian S. Lewis,et al.  A Robust Gradient Sampling Algorithm for Nonsmooth, Nonconvex Optimization , 2005, SIAM J. Optim..

[3]  Pierre Maréchal,et al.  On a Class of Convex Sets and Functions , 2005 .

[4]  Vincent Guigues Inférence statistique pour l'optimisation stochastique : applications en finance et en gestion de production , 2005 .

[5]  Boris S. Mordukhovich,et al.  Subgradients of marginal functions in parametric mathematical programming , 2008, Math. Program..

[6]  K. Kiwiel Methods of Descent for Nondifferentiable Optimization , 1985 .

[7]  Krzysztof C. Kiwiel A Proximal-Projection Bundle Method for Lagrangian Relaxation, Including Semidefinite Programming , 2006, SIAM J. Optim..

[8]  Adrian S. Lewis,et al.  Nonsmooth analysis of eigenvalues , 1999, Math. Program..

[9]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[10]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[11]  Marko Mäkelä,et al.  Survey of Bundle Methods for Nonsmooth Optimization , 2002, Optim. Methods Softw..

[12]  F. Giannessi Variational Analysis and Generalized Differentiation , 2006 .

[13]  Huifu Xu,et al.  Level Function Method for Quasiconvex Programming , 2001 .

[14]  Pierre Maréchal,et al.  On a Functional Operation Generating Convex Functions, Part 2: Algebraic Properties , 2005 .

[15]  Pierre Maréchal,et al.  On a Functional Operation Generating Convex Functions, Part 1: Duality , 2005 .