Micro/nano thermal boundary layer equations with slip–creep–jump boundary conditions

At the micro- and nanoscale, the standard continuity boundary conditions at fluid-solid interfaces of classical transport phenomena do not apply and must be replaced by boundary conditions that allow discontinuities. In this study, the classical thermal laminar boundary layer equations are studied using Lie symmetries with the no-slip boundary condition for tangential velocity and continuous temperature boundary conditions replaced by non-linear slip-creep-jump boundary conditions. These boundary conditions contain an arbitrary index parameter, denoted by n > 0, which appears in the coefficients of the coupled ordinary differential equations to be solved. As an independent check on the numerical procedure, the case of a boundary layer formed in a convergent channel with a sink, which corresponds to n = 1/2, is solved analytically for various values of the Prandtl number and zero Brinkham number. Other values of n for n > 1/2 which correspond to the thermal boundary layer formed in the flow past a wedge are solved numerically for various values of the Prandtl and Brinkham number and constant coefficients appearing in the non-linear slip-creep-jump boundary conditions. It is found that for 1/2 < n < 2, solutions may be found for all values of the constant coefficients, while for n ≥ 2 the constant coefficient for the creep term must be set to zero.

[1]  Miccal T. Matthews,et al.  Nano boundary layer equation with nonlinear Navier boundary condition , 2007 .

[2]  John Carminati,et al.  Symbolic Computation and Differential Equations: Lie Symmetries , 2000, J. Symb. Comput..

[3]  F. Sharipov,et al.  Couette flow with slip and jump boundary conditions , 2000 .

[4]  V. S. Vaidhyanathan,et al.  Transport phenomena , 2005, Experientia.

[5]  M. Gad-el-Hak The Fluid Mechanics of Microdevices—The Freeman Scholar Lecture , 1999 .

[6]  James Clerk Maxwell,et al.  III. On stresses in rarefied gases arising from inequalities of temperature , 1878, Proceedings of the Royal Society of London.

[7]  M. Smoluchowski von Smolan,et al.  Ueber Wärmeleitung in verdünnten Gasen , 1898 .

[8]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[9]  P. Kandaswamy,et al.  Lie Group Analysis of Natural Convection Heat and Mass Transfer in an Inclined Surface , 2006 .

[10]  H. Blasius Grenzschichten in Flüssigkeiten mit kleiner Reibung , 1907 .

[11]  Miccal T. Matthews,et al.  Flow around nanospheres and nanocylinders , 2006 .

[12]  S. Troian,et al.  A general boundary condition for liquid flow at solid surfaces , 1997, Nature.

[13]  K. Breuer,et al.  APPARENT SLIP FLOWS IN HYDROPHILIC AND HYDROPHOBIC MICROCHANNELS , 2003 .

[14]  Yulii D. Shikhmurzaev,et al.  The moving contact line on a smooth solid surface , 1993 .

[15]  W. Tollmien,et al.  Über Flüssigkeitsbewegung bei sehr kleiner Reibung , 1961 .

[16]  Micro/nano sliding plate problem with Navier boundary condition , 2006 .

[17]  Ping Sheng,et al.  Generalized Navier Boundary Condition for the Moving Contact Line , 2003 .

[18]  P. Kandaswamy,et al.  LIE GROUP ANALYSIS OF NATURAL CONVECTION HEAT AND MASS TRANSFER IN AN INCLINED POROUS SURFACE WITH HEAT GENERATION , 2006 .

[19]  John C. Slattery,et al.  Advanced transport phenomena , 1999 .

[20]  J. Spurk Boundary Layer Theory , 2019, Fluid Mechanics.

[21]  H. L. Evans,et al.  Laminar Boundary-Layer Theory. , 1968 .

[22]  O. Baysal,et al.  Control of separated flow past a backward facing step in a microchannel , 2004 .

[23]  J. M. Hill Differential Equations and Group Methods for Scientists and Engineers , 1992 .

[24]  Chang-Hwan Choi,et al.  To Slip or Not to Slip: Water Flows in Hydrophilic and Hydrophobic Microchannels , 2002 .

[25]  E. Pohlhausen,et al.  Der Wärmeaustausch zwischen festen Körpern und Flüssigkeiten mit kleiner reibung und kleiner Wärmeleitung , 1921 .

[26]  George Em Karniadakis,et al.  REPORT: A MODEL FOR FLOWS IN CHANNELS, PIPES, AND DUCTS AT MICRO AND NANO SCALES , 1999 .