Advances in fiber optics

This paper describes the development of fiber optics technology — an essential element of the telecommunications revolution — and reviews the remarkable progress in fiber design and fabrication, optical amplifiers, UV-induced fiber gratings, novel microstructured optical fibers, and integrated optics. The paper also explores the limits of optical fiber channel capacity and considers the future of optical communications.

[1]  M.A. Cappuzzo,et al.  Integrated all-pass filters for tunable dispersion and dispersion slope compensation , 1999, IEEE Photonics Technology Letters.

[2]  S. Grubb,et al.  Chapter 7 – Optical Fiber Components and Devices , 1997 .

[3]  F. Kapron,et al.  RADIATION LOSSES IN GLASS OPTICAL WAVEGUIDES , 1970 .

[4]  Jay R. Simpson,et al.  High-gain erbium-doped traveling-wave fiber amplifier , 1987 .

[5]  E. Desurvire Erbium-doped fiber amplifiers for a new era of optical communications , 1996, International Commission for Optics.

[6]  F. Forghieri,et al.  Chapter 8 – Fiber Nonlinearities and Their Impact on Transmission Systems , 1997 .

[7]  C.R. Doerr,et al.  Arrayed waveguide lens wavelength add-drop in silica , 1999, IEEE Photonics Technology Letters.

[8]  Knight,et al.  Single-Mode Photonic Band Gap Guidance of Light in Air. , 1999, Science.

[9]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[10]  L. Boivin,et al.  A 1021 channel WDM system , 2000 .

[11]  A. Stentz,et al.  Efficient visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm , 1999, Technical Digest. Summaries of papers presented at the Conference on Lasers and Electro-Optics. Postconference Edition. CLEO '99. Conference on Lasers and Electro-Optics (IEEE Cat. No.99CH37013).

[12]  J. Irven,et al.  Optical fiber communications, Volume 1: Fiber Fabrication: Edited by Tingye Li Academic, 1985, pp xii + 363, £54, $54 , 1985 .

[13]  Gregory Raybon,et al.  Unrepeatered transmission over 150 km of nonzero-dispersion fibre at 100 Gbit/s with semiconductor based pulse source, demultiplexer and clock recovery , 1999 .

[14]  Christi K. Madsen,et al.  An All-pass Filter for Tunable Dispersion and Dispersion Slope Compensation , 1999 .

[15]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[16]  C. Henry,et al.  Chapter 8 – Silicon Optical Bench Waveguide Technology , 1997 .

[17]  N. Gisin,et al.  Violation of Bell Inequalities by Photons More Than 10 km Apart , 1998, quant-ph/9806043.

[18]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[19]  I. M. Jauncey,et al.  Low-noise erbium-doped fibre amplifier operating at 1.54μm , 1987 .

[20]  D.J. DiGiovanni,et al.  Silica-air microstructured fibers: properties and applications , 1999, OFC/IOOC . Technical Digest. Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication.

[21]  B.J. Eggleton,et al.  Electrically tunable power efficient dispersion compensating fiber Bragg gratings for dynamic operation in nonlinear lightwave systems , 1999, OFC/IOOC . Technical Digest. Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication.

[22]  K. Kao,et al.  Dielectric-fibre surface waveguides for optical frequencies , 1966 .

[23]  A. Gnauck,et al.  Dispersion compensation for optical fiber systems , 1995 .

[24]  I. Ryazansky,et al.  Integrated planar waveguide amplifier with 15 dB net gain at 1550 nm , 1999, OFC/IOOC . Technical Digest. Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication.

[25]  A. H. Gnauck,et al.  Chapter 7 – Dispersion Compensation for Optical Fiber Systems , 1997 .

[26]  G. Giaretta,et al.  11 Gb/sec data transmission through 100 m of perfluorinated graded-index polymer optical fiber , 1999, OFC/IOOC . Technical Digest. Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication.

[27]  A. R. Kortan,et al.  Uses of nonoxide glasses for fiber optics , 1996, Optics + Photonics.

[28]  John Lehrer Zyskind,et al.  Chapter 2 - Erbium-Doped Fiber Amplifiers for Optical Communications , 1997 .

[29]  C. R. Giles,et al.  Reflection-induced changes in the optical spectra of 980-nm QW lasers , 1994, IEEE Photonics Technology Letters.

[30]  E. Desurvire,et al.  High-gain erbium-doped traveling-wave fiber amplifier. , 1997, Optics letters.

[31]  Samuel L. Braunstein,et al.  Quantum error correction for communication with linear optics , 1998, Nature.

[32]  John E. Sipe,et al.  Long-period fiber gratings as band-rejection filters , 1995 .

[33]  8 x 10 Gb/s 1.3-μm unrepeatered transmission over a distance of 141 km with Raman post- and pre-amplifiers , 1998, IEEE Photonics Technology Letters.

[34]  F. Martini,et al.  Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels , 1997, quant-ph/9710013.

[35]  C. Dragone,et al.  Proposed optical cross connect using a planar arrangement of beam steerers , 1999, IEEE Photonics Technology Letters.