Defining a centromere-like element in Bacillus subtilis by Identifying the binding sites for the chromosome-anchoring protein RacA.

[1]  Reid C. Johnson,et al.  Micromechanical analysis of the binding of DNA-bending proteins HMGB1, NHP6A, and HU reveals their ability to form highly stable DNA-protein complexes. , 2004, Biochemistry.

[2]  Cees Dekker,et al.  Dual architectural roles of HU: formation of flexible hinges and rigid filaments. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Thomas Kruse,et al.  Bacterial Mitotic Machineries , 2004, Cell.

[4]  H. Niki,et al.  migS, a cis‐acting site that affects bipolar positioning of oriC on the Escherichia coli chromosome , 2004, The EMBO journal.

[5]  R. Losick,et al.  Assembly of the SpoIIIE DNA Translocase Depends on Chromosome Trapping in Bacillus subtilis , 2003, Current Biology.

[6]  K. Nasmyth,et al.  Building and breaking bridges between sister chromatids. , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[7]  Shane T. Jensen,et al.  The Spo0A regulon of Bacillus subtilis , 2003, Molecular microbiology.

[8]  C. Jacobs-Wagner,et al.  Spatial and temporal control of differentiation and cell cycle progression in Caulobacter crescentus. , 2003, Annual review of microbiology.

[9]  J. Errington,et al.  RacA and the Soj‐Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis , 2003, Molecular microbiology.

[10]  David J Sherratt,et al.  Bacterial Chromosome Dynamics , 2003, Science.

[11]  E. Eichler,et al.  Structural Dynamics of Eukaryotic Chromosome Evolution , 2003, Science.

[12]  W. Nelson,et al.  Adaptation of core mechanisms to generate cell polarity , 2003, Nature.

[13]  Jun S. Liu,et al.  Integrating regulatory motif discovery and genome-wide expression analysis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[14]  A. Grossman,et al.  Effects of the Chromosome Partitioning Protein Spo0J (ParB) on oriC Positioning and Replication Initiation in Bacillus subtilis , 2003, Journal of bacteriology.

[15]  R. Losick,et al.  RacA, a Bacterial Protein That Anchors Chromosomes to the Cell Poles , 2002, Science.

[16]  Patrick Eichenberger,et al.  Genome-Wide Analysis of the Stationary-Phase Sigma Factor (Sigma-H) Regulon of Bacillus subtilis , 2002, Journal of bacteriology.

[17]  J. Errington,et al.  A large dispersed chromosomal region required for chromosome segregation in sporulating cells of Bacillus subtilis , 2002, The EMBO journal.

[18]  Jun S. Liu,et al.  An algorithm for finding protein–DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments , 2002, Nature Biotechnology.

[19]  Y. Kasahara,et al.  Two separate DNA sequences within oriC participate in accurate chromosome segregation in Bacillus subtilis , 2002, Molecular microbiology.

[20]  Lucy Shapiro,et al.  Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[21]  R. B. Jensen,et al.  Dynamic localization of proteins and DNA during a bacterial cell cycle , 2002, Nature Reviews Molecular Cell Biology.

[22]  T. Hirano The ABCs of SMC proteins: two-armed ATPases for chromosome condensation, cohesion, and repair. , 2002, Genes & development.

[23]  R. Losick,et al.  Sporulation Genes and Intercompartmental Regulation , 2002 .

[24]  O. Gileadi,et al.  Compaction of single DNA molecules induced by binding of integration host factor (IHF) , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Errington,et al.  Division site selection protein DivIVA of Bacillus subtilis has a second distinct function in chromosome segregation during sporulation. , 2001, Genes & development.

[26]  D. Botstein,et al.  Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF , 2001, Nature.

[27]  R. Losick,et al.  Bacillus Subtilis and Its Closest Relatives: From Genes to Cells , 2001 .

[28]  S. Smith,et al.  Single-molecule studies of DNA mechanics. , 2000, Current opinion in structural biology.

[29]  John J. Wyrick,et al.  Genome-wide location and function of DNA binding proteins. , 2000, Science.

[30]  R. B. Jensen,et al.  The Caulobacter crescentus smc gene is required for cell cycle progression and chromosome segregation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[31]  P. Benfey,et al.  ASYMMETRIC CELL DIVISION IN PLANTS. , 1999, Annual review of plant physiology and plant molecular biology.

[32]  J. Errington,et al.  Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. , 1998, Genes & development.

[33]  K. Asai,et al.  A Bacillus subtilis gene‐encoding protein homologous to eukaryotic SMC motor protein is necessary for chromosome partition , 1998, Molecular microbiology.

[34]  A. Grossman,et al.  Characterization of a prokaryotic SMC protein involved in chromosome partitioning. , 1998, Genes & development.

[35]  Yuh Nung Jan,et al.  Asymmetric cell division , 1998, Nature.

[36]  T. Strick,et al.  Behavior of supercoiled DNA. , 1998, Biophysical journal.

[37]  A. Grossman,et al.  Identification and Characterization of a Bacterial Chromosome Partitioning Site , 1998, Cell.

[38]  M. Snyder,et al.  Cell polarity and morphogenesis in budding yeast. , 1998, Annual review of microbiology.

[39]  J. Errington,et al.  Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. , 1997, Genes & development.

[40]  A. Grossman,et al.  Bipolar localization of a chromosome partition protein in Bacillus subtilis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[41]  J. Errington,et al.  Septal localization of the SpoIIIE chromosome partitioning protein in Bacillus subtilis , 1997, The EMBO journal.

[42]  A. Grossman,et al.  Bipolar Localization of the Replication Origin Regions of Chromosomes in Vegetative and Sporulating Cells of B. subtilis , 1997, Cell.

[43]  P. Gönczy,et al.  Cortical domains and the mechanisms of asymmetric cell division. , 1996, Trends in cell biology.

[44]  J. Errington,et al.  The Bacillus subtilis soj‐spo0J locus is required for a centromere‐like function involved in prespore chromosome partitioning , 1996, Molecular microbiology.

[45]  R. Losick,et al.  Molecular genetics of sporulation in Bacillus subtilis. , 1996, Annual review of genetics.

[46]  J. Errington,et al.  Bacillus subtilis SpoIIIE protein required for DNA segregation during asymmetric cell division. , 1994, Science.

[47]  S. Smith,et al.  Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. , 1992, Science.

[48]  Ira Herskowitz,et al.  Mechanisms of asymmetric cell division: Two Bs or not two Bs, that is the question , 1992, Cell.

[49]  T. Ogura,et al.  The new gene mukB codes for a 177 kd protein with coiled‐coil domains involved in chromosome partitioning of E. coli. , 1991, The EMBO journal.

[50]  C. Harwood,et al.  Molecular biological methods for Bacillus , 1990 .

[51]  H. Sambrook Molecular cloning : a laboratory manual. Cold Spring Harbor, NY , 1989 .

[52]  P Youngman,et al.  Construction of a cloning site near one end of Tn917 into which foreign DNA may be inserted without affecting transposition in Bacillus subtilis or expression of the transposon-borne erm gene. , 1984, Plasmid.

[53]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[54]  D. Dubnau,et al.  Fate of transforming DNA following uptake by competent Bacillus subtilis. I. Formation and properties of the donor-recipient complex. , 1971 .

[55]  J. Mandelstam,et al.  Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. , 1969, The Biochemical journal.