Practical guidelines for reporting results in single- and multi-component analytical calibration: a tutorial.

Practical guidelines for reporting analytical calibration results are provided. General topics, such as the number of reported significant figures and the optimization of analytical procedures, affect all calibration scenarios. In the specific case of single-component or univariate calibration, relevant issues discussed in the present Tutorial include: (1) how linearity can be assessed, (2) how to correctly estimate the limits of detection and quantitation, (2) when and how standard addition should be employed, (3) how to apply recovery studies for evaluating accuracy and precision, and (4) how average prediction errors can be compared for different analytical methodologies. For multi-component calibration procedures based on multivariate data, pertinent subjects here included are the choice of algorithms, the estimation of analytical figures of merit (detection capabilities, sensitivity, selectivity), the use of non-linear models, the consideration of the model regression coefficients for variable selection, and the application of certain mathematical pre-processing procedures such as smoothing.

[1]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[2]  J. A. Arancibia,et al.  Determination of five pesticides in juice, fruit and vegetable samples by means of liquid chromatography combined with multivariate curve resolution. , 2014, Analytica chimica acta.

[3]  M. C. U. Araújo,et al.  The successive projections algorithm for variable selection in spectroscopic multicomponent analysis , 2001 .

[4]  C. Jun,et al.  Performance of some variable selection methods when multicollinearity is present , 2005 .

[5]  K. Danzer,et al.  Selectivity in analytical chemistry (IUPAC Recommendations 2001) , 2001 .

[6]  Alejandro C. Olivieri,et al.  MVC1: an integrated MatLab toolbox for first-order multivariate calibration , 2004 .

[7]  F. X. Rius,et al.  MULTIVARIATE DETECTION LIMITS WITH FIXED PROBABILITIES OF ERROR , 1999 .

[8]  A. Gustavo González,et al.  A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles , 2007 .

[9]  Bruce R. Kowalski,et al.  Qualitative Information from Multivariate Calibration Models , 1990 .

[10]  B. Walczak,et al.  About kernel latent variable approaches and SVM , 2005 .

[11]  Desire L. Massart,et al.  Detection of nonlinearity in multivariate calibration , 1998 .

[12]  R. Barnes,et al.  Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra , 1989 .

[13]  T. Lestander,et al.  Prediction of Pinus sylvestris clear-wood properties using NIR spectroscopy and biorthogonal partial least squares regression , 2008 .

[14]  J. Andrade,et al.  Statistical comparison of the slopes of two regression lines: A tutorial. , 2014, Analytica chimica acta.

[15]  M. C. Ortiz,et al.  Quality of Analytical Measurements: Univariate Regression , 2020, Comprehensive Chemometrics.

[16]  E. V. Thomas,et al.  Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information , 1988 .

[17]  A. Olivieri Analytical figures of merit: from univariate to multiway calibration. , 2014, Chemical reviews.

[18]  Peter D. Wentzell,et al.  Hazards of digital smoothing filters as a preprocessing tool in multivariate calibration , 1999 .

[19]  Hilko van der Voet,et al.  Comparing the predictive accuracy of models using a simple randomization test , 1994 .

[20]  M. Valcárcel,et al.  Analytical applications of synchronous fluorescence spectroscopy. , 1986, Talanta.

[21]  Christopher D. Brown,et al.  Critical factors limiting the interpretation of regression vectors in multivariate calibration , 2009 .

[22]  Tom Fearn,et al.  On orthogonal signal correction , 2000 .

[23]  Johanna Smeyers-Verbeke,et al.  Handbook of Chemometrics and Qualimetrics: Part A , 1997 .

[24]  Bruce R. Kowalski,et al.  The Generalized Standard Addition Method. , 1979 .

[25]  Franco Allegrini,et al.  IUPAC-consistent approach to the limit of detection in partial least-squares calibration. , 2014, Analytical chemistry.

[26]  Luis Cuadros Rodríguez,et al.  Estimation of Performance Characteristics of an Analytical Method Using the Data Set Of The Calibration Experiment , 1993 .

[27]  L. A. Currie,et al.  Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995) , 1995 .

[28]  Valeria A. Lozano,et al.  Standard addition analysis of fluoroquinolones in human serum in the presence of the interferent salicylate using lanthanide-sensitized excitation-time decay luminescence data and multivariate curve resolution. , 2009, Talanta.

[29]  Klaus Danzer,et al.  GUIDELINES FOR CALIBRATION IN ANALYTICAL CHEMISTRY , 1998 .

[30]  F Despagne,et al.  Neural networks in multivariate calibration. , 1998, The Analyst.

[31]  R. Manne Analysis of two partial-least-squares algorithms for multivariate calibration , 1987 .

[32]  M. A. Herrador,et al.  Intra-laboratory testing of method accuracy from recovery assays. , 1999, Talanta.

[33]  S. Wold,et al.  PLS-regression: a basic tool of chemometrics , 2001 .

[34]  Peter D. Wentzell,et al.  Comparison of principal components regression and partial least squares regression through generic simulations of complex mixtures , 2003 .

[35]  Olav M. Kvalheim,et al.  Interpretation of latent-variable regression models , 1989 .

[36]  M. C. Ortiz,et al.  Tutorial on evaluation of type I and type II errors in chemical analyses: from the analytical detection to authentication of products and process control. , 2010, Analytica chimica acta.

[37]  A. G. Frenich,et al.  Wavelength selection method for multicomponent spectrophotometric determinations using partial least squares , 1995 .

[38]  J. A. Fernández Pierna,et al.  NIR fingerprint screening for early control of non-conformity at feed mills. , 2015, Food chemistry.

[39]  P. Geladi,et al.  Linearization and Scatter-Correction for Near-Infrared Reflectance Spectra of Meat , 1985 .

[40]  S. Wold,et al.  Orthogonal signal correction of near-infrared spectra , 1998 .

[41]  John F. MacGregor,et al.  Interpretation of regression coefficients under a latent variable regression model , 2001 .

[42]  J. Riu,et al.  Assessing the accuracy of analytical methods using linear regression with errors in both axes. , 1996, Analytical chemistry.

[43]  Alejandro C Olivieri,et al.  Simultaneous multiresponse optimization applied to epinastine determination in human serum by using capillary electrophoresis. , 2007, Analytica chimica acta.

[44]  Roberto Gonçalves Junqueira,et al.  A procedure to assess linearity by ordinary least squares method , 2005 .

[45]  Tahir Mehmood,et al.  A review of variable selection methods in Partial Least Squares Regression , 2012 .

[46]  Klaus Danzer,et al.  Guidelines for calibration in analytical chemistry. Part I. Fundamentals and single component calibration (IUPAC Recommendations 1998) , 1998 .

[47]  J. Durbin,et al.  Testing for serial correlation in least squares regression. II. , 1950, Biometrika.

[48]  Alejandro C Olivieri,et al.  Analytical advantages of multivariate data processing. One, two, three, infinity? , 2008, Analytical chemistry.

[49]  G. Derringer,et al.  Simultaneous Optimization of Several Response Variables , 1980 .

[50]  D. Massart,et al.  Elimination of uninformative variables for multivariate calibration. , 1996, Analytical chemistry.

[51]  Rapid Analysis of Apple Leaf Nitrogen using Near Infrared Spectroscopy and Multiple Linear Regression , 2012 .

[52]  A. Olivieri,et al.  Teaching Chemometrics with a Bioprocess: Analytical Methods Comparison Using Bivariate Linear Regression , 2002 .

[53]  Riccardo Leardi,et al.  Experimental design in chemistry: A tutorial. , 2009, Analytica chimica acta.

[54]  Reynaldo César Castells,et al.  Systematic errors: detection and correction by means of standard calibration, Youden calibration and standard additions method in conjunction with a method response model , 2000 .