Enhanced Li+ conductivity of Li7La3Zr2O12 by increasing lattice entropy and atomic redistribution via Spark Plasma Sintering

[1]  G. Ceder,et al.  High-entropy mechanism to boost ionic conductivity , 2022, Science.

[2]  C. Jung,et al.  Unlocking the hidden chemical space in cubic-phase garnet solid electrolyte for efficient quasi-all-solid-state lithium batteries , 2022, Nature communications.

[3]  Jack Yang,et al.  Realization of superior ionic conductivity by manipulating the atomic rearrangement in Al-doped Li7La3Zr2O12 , 2022, Ceramics International.

[4]  Bingbing Tian,et al.  From protonation & Li-rich contamination to grain-boundary segregation: evaluations of solvent-free vs. wet routes on preparing Li7La3Zr2O12 solid electrolyte , 2022, Journal of Energy Chemistry.

[5]  Jiujun Zhang,et al.  Enhanced electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode material co-coated by graphene/TiO2 , 2021, Current Applied Physics.

[6]  T. Ishimoto,et al.  Lattice distortion in selective laser melting (SLM)-manufactured unstable β-type Ti-15Mo-5Zr-3Al alloy analyzed by high-precision X-ray diffractometry , 2021 .

[7]  Danling Wang,et al.  Crystal Structure and Preparation of Li7La3Zr2O12 (LLZO) Solid-State Electrolyte and Doping Impacts on the Conductivity: An Overview , 2021, Electrochem.

[8]  S. Berendts,et al.  Investigating the electrochemical stability of Li7La3Zr2O12 solid electrolytes using field stress experiments† , 2021, Journal of materials chemistry. A.

[9]  Bingbing Tian,et al.  Phase transformation and grain-boundary segregation in Al-Doped Li7La3Zr2O12 ceramics , 2021 .

[10]  G. Redhammer,et al.  Study on the structural phase transitions in NaSICON-type compounds using Ag3Sc2(PO4)3 as a model system , 2020, Acta Crystallographica. Section B: Structural Science, Crystal Engineering and Materials.

[11]  Shijun Zhao Lattice distortion in high‐entropy carbide ceramics from first‐principles calculations , 2020 .

[12]  Ying Li,et al.  Improvement in the cycling stability and rate capability of LiNi0.5Co0.2Mn0.3O2 cathode material via the use of a Ta2O5 coating , 2020 .

[13]  B. Gadermaier,et al.  The Electronic Conductivity of Single Crystalline Ga‐Stabilized Cubic Li7La3Zr2O12: A Technologically Relevant Parameter for All‐Solid‐State Batteries , 2020, Advanced Materials Interfaces.

[14]  Xiaogang Han,et al.  A simple and highly efficient method toward high density garnet-type LLZTO solid state electrolyte. , 2020, ACS applied materials & interfaces.

[15]  J. Lian,et al.  Spark plasma sintering (SPS) densified U3Si2 pellets: Microstructure control and enhanced mechanical and oxidation properties , 2020, Journal of Alloys and Compounds.

[16]  A. Cao,et al.  Garnet-type Solid-state Electrolyte Li7La3Zr2O12: Crystal Structure, Element Doping and Interface Strategies for Solid-state Lithium Batteries , 2020, Chemical Research in Chinese Universities.

[17]  Zhen Zhou,et al.  Towards practical lithium-metal anodes. , 2020, Chemical Society reviews.

[18]  Adelaide M. Nolan,et al.  Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries. , 2020, Chemical reviews.

[19]  S. Chou,et al.  Cobalt Chalcogenides/Cobalt Phosphides/Cobaltates with Hierarchical Nanostructures for Anode Materials of Lithium-Ion Batteries: Improving the Lithiation Environment. , 2019, Small.

[20]  V. Thangadurai,et al.  A bird's-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries , 2019, Energy & Environmental Science.

[21]  J. Rupp,et al.  A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films , 2019, Nature Energy.

[22]  Yi Cui,et al.  Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries , 2019, Chem.

[23]  Ru‐Shi Liu,et al.  An efficient multi-doping strategy to enhance Li-ion conductivity in the garnet-type solid electrolyte Li7La3Zr2O12 , 2019, Journal of Materials Chemistry A.

[24]  Amardeep,et al.  Mg-doping towards enhancing the composition-phase-structural stability of Li-La-zirconate based cubic garnet upon exposure to air , 2019, Scripta Materialia.

[25]  C. Du,et al.  Improvement of structural and optical properties of ZnAl2O4:Cr3+ ceramics with surface modification by using various concentrations of zinc acetate , 2018, Journal of Sol-Gel Science and Technology.

[26]  Linda F. Nazar,et al.  New horizons for inorganic solid state ion conductors , 2018 .

[27]  T. Charpentier,et al.  Bulk Li mobility enhancement in Spark Plasma Sintered Li(7−3x)AlxLa3Zr2O12 garnet , 2018, Ceramics International.

[28]  Georg Amthauer,et al.  The origin of conductivity variations in Al-stabilized Li7La3Zr2O12 ceramics , 2018, Solid State Ionics.

[29]  D. Xu,et al.  Fabrication of dense and porous Li2ZrO3 nanofibers with electrospinning method , 2018 .

[30]  Z. Wen,et al.  Method Using Water-Based Solvent to Prepare Li7La3Zr2O12 Solid Electrolytes. , 2018, ACS applied materials & interfaces.

[31]  Zhifeng Huang,et al.  Origin of the Phase Transition in Lithium Garnets , 2018 .

[32]  C. M. Handley,et al.  Phase stability and distortion in high-entropy oxides , 2017 .

[33]  Z. Wen,et al.  Two-step sintering strategy to prepare dense Li-Garnet electrolyte ceramics with high Li+ conductivity , 2017 .

[34]  Yue Wu,et al.  Gallium-Doped Li7La3Zr2O12 Garnet-Type Electrolytes with High Lithium-Ion Conductivity. , 2017, ACS applied materials & interfaces.

[35]  Lei Zhang,et al.  High Li-ion conductivity of Al-doped Li7La3Zr2O12 synthesized by solid-state reaction , 2016 .

[36]  Juergen Fleig,et al.  Fast Li-Ion-Conducting Garnet-Related Li7–3xFexLa3Zr2O12 with Uncommon I4̅3d Structure , 2016, Chemistry of materials : a publication of the American Chemical Society.

[37]  P. Hu,et al.  A facile synthesis of core-shell structured ZnO@C nanosphere and their high performance for lithium ion battery anode , 2016 .

[38]  F. Taulelle,et al.  Recent advances in application of (27)Al NMR spectroscopy to materials science. , 2016, Progress in nuclear magnetic resonance spectroscopy.

[39]  S. Krivovichev Structural complexity and configurational entropy of crystals. , 2016, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[40]  H. Hahn,et al.  Field assisted sintering of fine-grained Li7−3xLa3Zr2AlxO12 solid electrolyte and the influence of the microstructure on the electrochemical performance , 2016 .

[41]  Lei Cheng,et al.  Structural and Electrochemical Consequences of Al and Ga Cosubstitution in Li7La3Zr2O12 Solid Electrolytes , 2016, Chemistry of materials : a publication of the American Chemical Society.

[42]  M. Wilkening,et al.  Crystal Structure of Garnet-Related Li-Ion Conductor Li7–3xGaxLa3Zr2O12: Fast Li-Ion Conduction Caused by a Different Cubic Modification? , 2016, Chemistry of materials : a publication of the American Chemical Society.

[43]  Biyi Xu,et al.  Multistep sintering to synthesize fast lithium garnets , 2016 .

[44]  Kwang Man Kim,et al.  Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction , 2015, Scientific Reports.

[45]  Ashok Kumar Baral,et al.  Fast Solid-State Li Ion Conducting Garnet-Type Structure Metal Oxides for Energy Storage. , 2015, The journal of physical chemistry letters.

[46]  C. Liang,et al.  Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li(+) /H(+) exchange in aqueous solutions. , 2015, Angewandte Chemie.

[47]  Fei Chen,et al.  Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 solid electrolytes , 2014 .

[48]  T. Thompson,et al.  Tetragonal vs. cubic phase stability in Al – free Ta doped Li7La3Zr2O12 (LLZO) , 2014 .

[49]  Venkataraman Thangadurai,et al.  Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. , 2014, Chemical Society reviews.

[50]  K. Schwarz,et al.  DFT Study of the Role of Al3+ in the Fast Ion-Conductor Li7–3xAl3+xLa3Zr2O12 Garnet , 2014, Chemistry of materials : a publication of the American Chemical Society.

[51]  S. Manorama,et al.  Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors. , 2013, Physical chemistry chemical physics : PCCP.

[52]  A. Manthiram,et al.  Influence of Cation Ordering and Lattice Distortion on the Charge-Discharge Behavior of LiMn1.5Ni0.5O4 Spinel between 5.0 and 2.0 V , 2012 .

[53]  Boris Kozinsky,et al.  From order to disorder: The structure of lithium-conducting garnets Li7 − xLa3TaxZr2 − xO12 (x = 0–2) , 2012 .

[54]  C. Galven,et al.  Instability of the Lithium Garnet Li7La3Sn2O12: Li+/H+ Exchange and Structural Study , 2011 .

[55]  Martin Fisch,et al.  Crystal chemistry and stability of "Li7La3Zr2O12" garnet: a fast lithium-ion conductor. , 2011, Inorganic chemistry.

[56]  Ruhul Amin,et al.  Defect Chemistry of LiFePO4 , 2008 .

[57]  J. Maier,et al.  Effect of annealing on transport properties of LiFePO4: Towards a defect chemical model , 2008 .

[58]  M. Yashima,et al.  Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction , 2003 .

[59]  W. H. Baur The geometry of polyhedral distortions. Predictive relationships for the phosphate group , 1974 .

[60]  Liquan Chen,et al.  Doping Strategy and Mechanism for Oxide and Sulfide Solid Electrolytes with High Ionic Conductivity , 2022, Journal of Materials Chemistry A.

[61]  Luyi Yang,et al.  Mechanisms and properties of ion-transport in inorganic solid electrolytes , 2018 .

[62]  N. Uvarov,et al.  Influence of lithium oxide excess and alumina on grain boundary resistance of Li6.75La3Zr1.75Nb0.25O12 solid electrolyte , 2017 .

[63]  Q. Shen,et al.  Effect of lithium ion concentration on the microstructure evolution and its association with the ionic conductivity of cubic garnet-type nominal Li7Al0.25La3Zr2O12 solid electrolytes , 2016 .

[64]  Y. Chiang,et al.  Characterization of Electronic and Ionic Transport in Li1-xNi0.33Mn0.33Co0.33O2 (NMC333) and Li1-xNi0.50Mn0.20Co0.30O2 (NMC523) as a Function of Li Content , 2016 .