Design, modeling and controllability of a spherical mobile robot

A spherical mobile robot, rolling on a plane with the help of two internal rotors and working on the principle of conservation of angular momentum has recently been fabricated in our group. The robot is a classic example of a nonholonomic system for which many existing algorithms do not easily apply. The objective is to study feasible path planning algorithms on this system. In this paper, we present the design details of the spherical robot fabricated along with the hardware used. We use Euler parameters which describe a unit quaternion for orientation of the robot and develop mathematical model to avoid singularity problem. We also prove controllability of the system in the quaternion space.

[1]  Richard M. Murray,et al.  Nilpotent bases for a class of nonintegrable distributions with applications to trajectory generation for nonholonomic systems , 1994, Math. Control. Signals Syst..

[2]  Zexiang Li,et al.  Motion of two rigid bodies with rolling constraint , 1990, IEEE Trans. Robotics Autom..

[3]  P. Nikravesh Spatial Kinematic and Dynamic Analysis with Euler Parameters , 1984 .

[4]  Yangsheng Xu,et al.  A single-wheel, gyroscopically stabilized robot , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[5]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[6]  Antonio Bicchi,et al.  Introducing the "SPHERICLE": an experimental testbed for research and teaching in nonholonomy , 1997, Proceedings of International Conference on Robotics and Automation.

[7]  Tomi Ylikorpi,et al.  Ball-Shaped Robots: An Historical Overview and Recent Developments at TKK , 2005, FSR.

[8]  Roger A. Wehage Quaternions and Euler Parameters — A Brief Exposition , 1984 .

[9]  Yan Wang,et al.  Motion control of a spherical mobile robot , 1996, Proceedings of 4th IEEE International Workshop on Advanced Motion Control - AMC '96 - MIE.

[10]  Parviz E. Nikravesh,et al.  Computer-aided analysis of mechanical systems , 1988 .

[11]  Ahmed A. Shabana,et al.  Dynamics of Multibody Systems , 2020 .

[12]  S. Altmann Rotations, Quaternions, and Double Groups , 1986 .

[13]  Panu Harmo,et al.  Moving Eye - Interactive Telepresence Over Internet with a Ball Shaped Mobile Robot , 2001 .

[14]  Atsushi Koshiyama,et al.  Design and Control of an All-Direction Steering Type Mobile Robot , 1993, Int. J. Robotics Res..

[15]  R. Mukherjee,et al.  Motion Planning for a Spherical Mobile Robot: Revisiting the Classical Ball-Plate Problem , 2002 .

[16]  K. Spring Euler parameters and the use of quaternion algebra in the manipulation of finite rotations: A review , 1986 .

[17]  Hagen Schempf,et al.  Cyclops: miniature robotic reconnaissance system , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[18]  Rhodri H. Armour,et al.  Rolling in nature and robotics: A review , 2006 .

[19]  Benoît Raucent,et al.  ROLLMOBS, a new drive system for omnimobile robots , 2001, Robotica.