Implementation of quantum and classical discrete fractional Fourier transforms

Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools.

[1]  H. Ozaktas,et al.  Fractional Fourier optics , 1995 .

[2]  K. Wolf,et al.  Fractional Fourier-Kravchuk transform , 1997 .

[3]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[4]  J. Renema,et al.  Engineering of two-photon spatial quantum correlations behind a double slit , 2009 .

[6]  M. Yzuel,et al.  Encoding amplitude information onto phase-only filters. , 1999, Applied optics.

[7]  Stefan Nolte,et al.  Experimental observation of N00N state Bloch oscillations , 2015, Nature Communications.

[8]  H. Ozaktas,et al.  Fractional Fourier transforms and their optical implementation. II , 1993 .

[9]  John C. Wood,et al.  Radon transformation of time-frequency distributions for analysis of multicomponent signals , 1994, IEEE Trans. Signal Process..

[10]  M. Orszag,et al.  Eigenvalues and Eigenvectors of Angular Momentum Operator Jx without the Theory of Rotations , 1972 .

[11]  Andreas Buchleitner,et al.  Stringent and efficient assessment of boson-sampling devices. , 2013, Physical review letters.

[12]  P. Humphreys,et al.  Quantum enhanced multiple phase estimation. , 2013, Physical review letters.

[13]  Luís B. Almeida,et al.  The fractional Fourier transform and time-frequency representations , 1994, IEEE Trans. Signal Process..

[14]  E. Lieb,et al.  Two Soluble Models of an Antiferromagnetic Chain , 1961 .

[15]  Bloch oscillations of einstein-podolsky-rosen states , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[16]  Stefan Nolte,et al.  Discrete optics in femtosecond-laser-written photonic structures , 2010 .

[17]  Vogel,et al.  Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. , 1989, Physical review. A, General physics.

[18]  V. Namias The Fractional Order Fourier Transform and its Application to Quantum Mechanics , 1980 .

[19]  M. A. Man'ko Fractional Fourier transform in information processing, tomography of optical signal, and Green function of harmonic oscillator , 1999 .

[20]  Yaron Silberberg,et al.  Fourier processing of quantum light , 2012 .

[21]  M. Marhic Roots of the identity operator and optics , 1995 .

[22]  Robert Keil,et al.  Perfect transfer of path-entangled photons in J x photonic lattices , 2013 .

[23]  Haldun M. Özaktas,et al.  The fractional fourier transform , 2001, 2001 European Control Conference (ECC).

[24]  S. Huelga,et al.  Dissipative ground-state preparation of a spin chain by a structured environment , 2013, 1304.2201.

[25]  Roberto Morandotti,et al.  Quantum and classical correlations in waveguide lattices. , 2008, Physical review letters.

[26]  Kurt Bernardo Wolf,et al.  Integral transforms in science and engineering , 1979 .

[27]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[28]  A. Lohmann,et al.  Chirp filtering in the fractional Fourier domain. , 1994, Applied optics.

[29]  Paul,et al.  Phase retrieval in quantum mechanics. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[30]  A. Lohmann Image rotation, Wigner rotation, and the fractional Fourier transform , 1993 .

[31]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[32]  Jeremy L O'Brien,et al.  Laser written waveguide photonic quantum circuits. , 2009, Optics express.

[33]  A. Lohmann,et al.  Fractional fourier transform: photonic implementation. , 1994, Applied optics.

[34]  Yaron Silberberg,et al.  Discretizing light behaviour in linear and nonlinear waveguide lattices , 2003, Nature.

[35]  A. Lohmann,et al.  RELATIONSHIPS BETWEEN THE RADON-WIGNER AND FRACTIONAL FOURIER TRANSFORMS , 1994 .

[36]  D. F. McAlister,et al.  Spatial and Temporal Optical Field Reconstruction Using Phase-Space Tomography , 1994 .