Image retrieval with relevance feedback based on graph-theoretic region correspondence estimation

This paper presents a graph-theoretic approach for region-based image retrieval. When dealing with image matching problem, we propose converting the region correspondence estimation into an attributed graph matching problem and measuring the image similarity in terms of both the region correspondence and the low-level features. In addition, during the relevance feedback, we propose using a maximum likelihood method to re-estimate region features and region importance while retaining its inherent spatial organization. Experimental results show that the proposed graph-theoretic matching criterion outperforms other existing methods which include no spatial information in the matching criterion. The experiments also show that the performance can be further improved with our proposed relevance feedback scheme.

[1]  Chiou-Ting Hsu,et al.  Image retrieval with relevance feedback based on graph-theoretic region correspondence estimation , 2004, ICPR 2004.

[2]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[3]  Thomas S. Huang,et al.  Optimizing learning in image retrieval , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[4]  Chengcui Zhang,et al.  Multiple object retrieval for image databases using multiple instance learning and relevance feedback , 2004, 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763).

[5]  C.-Y. Li,et al.  Relevance feedback using generalized Bayesian framework with region-based optimization learning , 2005, IEEE Transactions on Image Processing.

[6]  W. Eric L. Grimson,et al.  Spatial template extraction for image retrieval by region matching , 2003, IEEE Trans. Image Process..

[7]  Alberto Del Bimbo,et al.  Visual information retrieval , 1999 .

[8]  Djemel Ziou,et al.  Learning from negative example in relevance feedback for content-based image retrieval , 2002, Object recognition supported by user interaction for service robots.

[9]  Thomas Martin Deserno,et al.  Content-based image retrieval by matching hierarchical attributed region adjacency graphs , 2004, SPIE Medical Imaging.

[10]  Xuelong Li,et al.  Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Yixin Chen,et al.  A Region-Based Fuzzy Feature Matching Approach to Content-Based Image Retrieval , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  H. Greenspan,et al.  Region correspondence for image matching via EMD flow , 2000, 2000 Proceedings Workshop on Content-based Access of Image and Video Libraries.

[13]  Wei-Ying Ma,et al.  Learning similarity measure for natural image retrieval with relevance feedback , 2002, IEEE Trans. Neural Networks.

[14]  Bo Zhang,et al.  An efficient and effective region-based image retrieval framework , 2004, IEEE Transactions on Image Processing.

[15]  Ling Guan,et al.  An interactive approach for CBIR using a network of radial basis functions , 2004, IEEE Transactions on Multimedia.

[16]  Linda G. Shapiro,et al.  Computer Vision , 2001 .

[17]  Edwin R. Hancock,et al.  Structural Graph Matching Using the EM Algorithm and Singular Value Decomposition , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Nuno Vasconcelos,et al.  Minimum probability of error image retrieval , 2012, IEEE Transactions on Signal Processing.

[19]  Ricardo Baeza-Yates,et al.  An image similarity measure based on graph matching , 2000, Proceedings Seventh International Symposium on String Processing and Information Retrieval. SPIRE 2000.

[20]  Hans-Peter Kriegel,et al.  Content-Based Image Retrieval Using Multiple Representations , 2004, KES.

[21]  Christos Faloutsos,et al.  MindReader: Querying Databases Through Multiple Examples , 1998, VLDB.

[22]  Wei-Ying Ma,et al.  Learning a semantic space from user's relevance feedback for image retrieval , 2003, IEEE Trans. Circuits Syst. Video Technol..

[23]  Chiou-Ting Hsu,et al.  Soft Region Correspondence Estimation for Graph-Theoretic Image Retrieval Using Quadratic Programming Approach , 2005, 2005 IEEE International Conference on Multimedia and Expo.

[24]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[25]  James Ze Wang,et al.  IRM: integrated region matching for image retrieval , 2000, ACM Multimedia.

[26]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[27]  Sugata Ghosal,et al.  An image retrieval system with automatic query modification , 2002, IEEE Trans. Multim..

[28]  Chiou-Ting Hsu,et al.  Region correspondence for image retrieval using graph-theoretic approach and maximum likelihood estimation , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[29]  Bo Zhang,et al.  Relevance feedback in region-based image retrieval , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[30]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Xuelong Li,et al.  Direct kernel biased discriminant analysis: a new content-based image retrieval relevance feedback algorithm , 2006, IEEE Transactions on Multimedia.