A topological hierarchy for functions on triangulated surfaces
暂无分享,去创建一个
Bernd Hamann | Valerio Pascucci | Herbert Edelsbrunner | Peer-Timo Bremer | H. Edelsbrunner | Valerio Pascucci | B. Hamann | P. Bremer
[1] Valerio Pascucci,et al. Morse-smale complexes for piecewise linear 3-manifolds , 2003, SCG '03.
[2] Herbert Edelsbrunner,et al. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.
[3] Herbert Edelsbrunner,et al. Hierarchical Morse—Smale Complexes for Piecewise Linear 2-Manifolds , 2003, Discret. Comput. Geom..
[4] Michael S. Floater,et al. Mean value coordinates , 2003, Comput. Aided Geom. Des..
[5] Amitabh Varshney,et al. Controlled Topology Simplification , 1996, IEEE Trans. Vis. Comput. Graph..
[6] Reinhard Klein,et al. Fat borders: gap filling for efficient view-dependent LOD NURBS rendering , 2004, Comput. Graph..
[7] M. Morse. Relations between the critical points of a real function of $n$ independent variables , 1925 .
[8] Lambertus Hesselink,et al. Visualizing vector field topology in fluid flows , 1991, IEEE Computer Graphics and Applications.
[9] R. Klein,et al. Fat Borders : Gap Filling For Efficient View-dependent LOD Rendering , 2003 .
[10] Hugues Hoppe,et al. Progressive meshes , 1996, SIGGRAPH.
[11] James R. Munkres,et al. Elements of algebraic topology , 1984 .
[12] Michael Garland,et al. Surface simplification using quadric error metrics , 1997, SIGGRAPH.
[13] Jacqueline H. Chen,et al. Direct numerical simulation of autoignition in non- homogeneous hydrogen-air mixtures , 2003 .
[14] Hans Hagen,et al. A topology simplification method for 2D vector fields , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).
[15] Gabriel Taubin,et al. A signal processing approach to fair surface design , 1995, SIGGRAPH.
[16] 松本 幸夫. An introduction to Morse theory , 2002 .
[17] Masaki Hilaga,et al. Topological Modeling for Visualization , 1997 .
[18] H. Greiner,et al. A survey on univariate data interpolation and approximation by splines of given shape , 1991 .
[19] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[20] Peter Lindstrom,et al. Fast and memory efficient polygonal simplification , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).
[21] Klaus Hörmann. Morphometrie der Erdoberfläche , 1971 .
[22] Herbert Edelsbrunner,et al. Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[23] John L. Pfaltz,et al. A Graph Grammar that Describes the Set of Two-Dimensional Surface Networks , 1978, Graph-Grammars and Their Application to Computer Science and Biology.
[24] Robert van Liere,et al. Collapsing flow topology using area metrics , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).
[25] Amitabh Varshney,et al. Dynamic view-dependent simplification for polygonal models , 1996, Proceedings of Seventh Annual IEEE Visualization '96.
[26] Mark Meyer,et al. Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.
[27] Chandrajit L. Bajaj,et al. Topology preserving data simplification with error bounds , 1998, Comput. Graph..
[28] Hans Hagen,et al. Continuous topology simplification of planar vector fields , 2001, Proceedings Visualization, 2001. VIS '01..
[29] Valerio Pascucci,et al. Terrain Simplification Simplified: A General Framework for View-Dependent Out-of-Core Visualization , 2002, IEEE Trans. Vis. Comput. Graph..
[30] Jihad El-Sana,et al. Topology Simplification for Polygonal Virtual Environments , 1998, IEEE Trans. Vis. Comput. Graph..
[31] Jovan Popovic,et al. Progressive simplicial complexes , 1997, SIGGRAPH.
[32] Hugues Hoppe,et al. View-dependent refinement of progressive meshes , 1997, SIGGRAPH.
[33] R. E. Carlson,et al. Monotone Piecewise Cubic Interpolation , 1980 .