A topological hierarchy for functions on triangulated surfaces

We combine topological and geometric methods to construct a multiresolution representation for a function over a two-dimensional domain. In a preprocessing stage, we create the Morse-Smale complex of the function and progressively simplify its topology by cancelling pairs of critical points. Based on a simple notion of dependency among these cancellations, we construct a hierarchical data structure supporting traversal and reconstruction operations similarly to traditional geometry-based representations. We use this data structure to extract topologically valid approximations that satisfy error bounds provided at runtime.

[1]  Valerio Pascucci,et al.  Morse-smale complexes for piecewise linear 3-manifolds , 2003, SCG '03.

[2]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[3]  Herbert Edelsbrunner,et al.  Hierarchical Morse—Smale Complexes for Piecewise Linear 2-Manifolds , 2003, Discret. Comput. Geom..

[4]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[5]  Amitabh Varshney,et al.  Controlled Topology Simplification , 1996, IEEE Trans. Vis. Comput. Graph..

[6]  Reinhard Klein,et al.  Fat borders: gap filling for efficient view-dependent LOD NURBS rendering , 2004, Comput. Graph..

[7]  M. Morse Relations between the critical points of a real function of $n$ independent variables , 1925 .

[8]  Lambertus Hesselink,et al.  Visualizing vector field topology in fluid flows , 1991, IEEE Computer Graphics and Applications.

[9]  R. Klein,et al.  Fat Borders : Gap Filling For Efficient View-dependent LOD Rendering , 2003 .

[10]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[11]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[12]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[13]  Jacqueline H. Chen,et al.  Direct numerical simulation of autoignition in non- homogeneous hydrogen-air mixtures , 2003 .

[14]  Hans Hagen,et al.  A topology simplification method for 2D vector fields , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[15]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[16]  松本 幸夫 An introduction to Morse theory , 2002 .

[17]  Masaki Hilaga,et al.  Topological Modeling for Visualization , 1997 .

[18]  H. Greiner,et al.  A survey on univariate data interpolation and approximation by splines of given shape , 1991 .

[19]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[20]  Peter Lindstrom,et al.  Fast and memory efficient polygonal simplification , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[21]  Klaus Hörmann Morphometrie der Erdoberfläche , 1971 .

[22]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[23]  John L. Pfaltz,et al.  A Graph Grammar that Describes the Set of Two-Dimensional Surface Networks , 1978, Graph-Grammars and Their Application to Computer Science and Biology.

[24]  Robert van Liere,et al.  Collapsing flow topology using area metrics , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[25]  Amitabh Varshney,et al.  Dynamic view-dependent simplification for polygonal models , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[26]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[27]  Chandrajit L. Bajaj,et al.  Topology preserving data simplification with error bounds , 1998, Comput. Graph..

[28]  Hans Hagen,et al.  Continuous topology simplification of planar vector fields , 2001, Proceedings Visualization, 2001. VIS '01..

[29]  Valerio Pascucci,et al.  Terrain Simplification Simplified: A General Framework for View-Dependent Out-of-Core Visualization , 2002, IEEE Trans. Vis. Comput. Graph..

[30]  Jihad El-Sana,et al.  Topology Simplification for Polygonal Virtual Environments , 1998, IEEE Trans. Vis. Comput. Graph..

[31]  Jovan Popovic,et al.  Progressive simplicial complexes , 1997, SIGGRAPH.

[32]  Hugues Hoppe,et al.  View-dependent refinement of progressive meshes , 1997, SIGGRAPH.

[33]  R. E. Carlson,et al.  Monotone Piecewise Cubic Interpolation , 1980 .