Regularization in kernel learning
暂无分享,去创建一个
[1] X. Fernique. Regularite des trajectoires des fonctions aleatoires gaussiennes , 1975 .
[2] M. Birman,et al. ESTIMATES OF SINGULAR NUMBERS OF INTEGRAL OPERATORS , 1977 .
[3] E. Giné,et al. Some Limit Theorems for Empirical Processes , 1984 .
[4] H. König. Eigenvalue Distribution of Compact Operators , 1986 .
[5] M. Talagrand. Regularity of gaussian processes , 1987 .
[6] G. Pisier. The volume of convex bodies and Banach space geometry , 1989 .
[7] M. Talagrand. Sharper Bounds for Gaussian and Empirical Processes , 1994 .
[8] Peter L. Bartlett,et al. The importance of convexity in learning with squared loss , 1998, COLT '96.
[9] M. Rudelson. Random Vectors in the Isotropic Position , 1996, math/9608208.
[10] P. Massart,et al. About the constants in Talagrand's concentration inequalities for empirical processes , 2000 .
[11] E. Berger. UNIFORM CENTRAL LIMIT THEOREMS (Cambridge Studies in Advanced Mathematics 63) By R. M. D UDLEY : 436pp., £55.00, ISBN 0-521-46102-2 (Cambridge University Press, 1999). , 2001 .
[12] M. Ledoux. The concentration of measure phenomenon , 2001 .
[13] A. W. van der Vaart,et al. Uniform Central Limit Theorems , 2001 .
[14] Felipe Cucker,et al. On the mathematical foundations of learning , 2001 .
[15] Bernhard Schölkopf,et al. Generalization Performance of Regularization Networks and Support Vector Machines via Entropy Numbers of Compact Operators , 1998 .
[16] Ding-Xuan Zhou,et al. The covering number in learning theory , 2002, J. Complex..
[17] Felipe Cucker,et al. Best Choices for Regularization Parameters in Learning Theory: On the Bias—Variance Problem , 2002, Found. Comput. Math..
[18] S. Smale,et al. ESTIMATING THE APPROXIMATION ERROR IN LEARNING THEORY , 2003 .
[19] Shahar Mendelson,et al. On the Performance of Kernel Classes , 2003, J. Mach. Learn. Res..
[20] S. Mendelson. On weakly bounded empirical processes , 2005, math/0512554.
[21] M. Talagrand. The Generic Chaining , 2005 .
[22] M. Rudelson,et al. Lp-moments of random vectors via majorizing measures , 2005, math/0507023.
[23] P. Bartlett,et al. Local Rademacher complexities , 2005, math/0508275.
[24] P. Bartlett,et al. Empirical minimization , 2006 .
[25] Yiming Ying,et al. Learning Rates of Least-Square Regularized Regression , 2006, Found. Comput. Math..
[26] V. Koltchinskii. Local Rademacher complexities and oracle inequalities in risk minimization , 2006, 0708.0083.
[27] S. Mendelson,et al. Subspaces and Orthogonal Decompositions Generated by Bounded Orthogonal Systems , 2007 .
[28] Ingo Steinwart,et al. Fast rates for support vector machines using Gaussian kernels , 2007, 0708.1838.
[29] P. Massart,et al. Concentration inequalities and model selection , 2007 .
[30] A. Caponnetto,et al. Optimal Rates for the Regularized Least-Squares Algorithm , 2007, Found. Comput. Math..
[31] Felipe Cucker,et al. Learning Theory: An Approximation Theory Viewpoint: Index , 2007 .
[32] S. Smale,et al. Learning Theory Estimates via Integral Operators and Their Approximations , 2007 .
[33] Felipe Cucker,et al. Learning Theory: An Approximation Theory Viewpoint (Cambridge Monographs on Applied & Computational Mathematics) , 2007 .
[34] S. Mendelson,et al. Reconstruction and Subgaussian Operators in Asymptotic Geometric Analysis , 2007 .
[35] P. Bartlett. FAST RATES FOR ESTIMATION ERROR AND ORACLE INEQUALITIES FOR MODEL SELECTION , 2008, Econometric Theory.
[36] Shahar Mendelson,et al. Obtaining fast error rates in nonconvex situations , 2008, J. Complex..
[37] P. Massart,et al. Statistical performance of support vector machines , 2008, 0804.0551.
[38] P. Bartlett,et al. ℓ1-regularized linear regression: persistence and oracle inequalities , 2012 .