Regularization in kernel learning

Supported in part by Australian Research Council Discovery Grant DP0559465 and by Israel Science Foundation Grant 666/06.

[1]  X. Fernique Regularite des trajectoires des fonctions aleatoires gaussiennes , 1975 .

[2]  M. Birman,et al.  ESTIMATES OF SINGULAR NUMBERS OF INTEGRAL OPERATORS , 1977 .

[3]  E. Giné,et al.  Some Limit Theorems for Empirical Processes , 1984 .

[4]  H. König Eigenvalue Distribution of Compact Operators , 1986 .

[5]  M. Talagrand Regularity of gaussian processes , 1987 .

[6]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[7]  M. Talagrand Sharper Bounds for Gaussian and Empirical Processes , 1994 .

[8]  Peter L. Bartlett,et al.  The importance of convexity in learning with squared loss , 1998, COLT '96.

[9]  M. Rudelson Random Vectors in the Isotropic Position , 1996, math/9608208.

[10]  P. Massart,et al.  About the constants in Talagrand's concentration inequalities for empirical processes , 2000 .

[11]  E. Berger UNIFORM CENTRAL LIMIT THEOREMS (Cambridge Studies in Advanced Mathematics 63) By R. M. D UDLEY : 436pp., £55.00, ISBN 0-521-46102-2 (Cambridge University Press, 1999). , 2001 .

[12]  M. Ledoux The concentration of measure phenomenon , 2001 .

[13]  A. W. van der Vaart,et al.  Uniform Central Limit Theorems , 2001 .

[14]  Felipe Cucker,et al.  On the mathematical foundations of learning , 2001 .

[15]  Bernhard Schölkopf,et al.  Generalization Performance of Regularization Networks and Support Vector Machines via Entropy Numbers of Compact Operators , 1998 .

[16]  Ding-Xuan Zhou,et al.  The covering number in learning theory , 2002, J. Complex..

[17]  Felipe Cucker,et al.  Best Choices for Regularization Parameters in Learning Theory: On the Bias—Variance Problem , 2002, Found. Comput. Math..

[18]  S. Smale,et al.  ESTIMATING THE APPROXIMATION ERROR IN LEARNING THEORY , 2003 .

[19]  Shahar Mendelson,et al.  On the Performance of Kernel Classes , 2003, J. Mach. Learn. Res..

[20]  S. Mendelson On weakly bounded empirical processes , 2005, math/0512554.

[21]  M. Talagrand The Generic Chaining , 2005 .

[22]  M. Rudelson,et al.  Lp-moments of random vectors via majorizing measures , 2005, math/0507023.

[23]  P. Bartlett,et al.  Local Rademacher complexities , 2005, math/0508275.

[24]  P. Bartlett,et al.  Empirical minimization , 2006 .

[25]  Yiming Ying,et al.  Learning Rates of Least-Square Regularized Regression , 2006, Found. Comput. Math..

[26]  V. Koltchinskii Local Rademacher complexities and oracle inequalities in risk minimization , 2006, 0708.0083.

[27]  S. Mendelson,et al.  Subspaces and Orthogonal Decompositions Generated by Bounded Orthogonal Systems , 2007 .

[28]  Ingo Steinwart,et al.  Fast rates for support vector machines using Gaussian kernels , 2007, 0708.1838.

[29]  P. Massart,et al.  Concentration inequalities and model selection , 2007 .

[30]  A. Caponnetto,et al.  Optimal Rates for the Regularized Least-Squares Algorithm , 2007, Found. Comput. Math..

[31]  Felipe Cucker,et al.  Learning Theory: An Approximation Theory Viewpoint: Index , 2007 .

[32]  S. Smale,et al.  Learning Theory Estimates via Integral Operators and Their Approximations , 2007 .

[33]  Felipe Cucker,et al.  Learning Theory: An Approximation Theory Viewpoint (Cambridge Monographs on Applied & Computational Mathematics) , 2007 .

[34]  S. Mendelson,et al.  Reconstruction and Subgaussian Operators in Asymptotic Geometric Analysis , 2007 .

[35]  P. Bartlett FAST RATES FOR ESTIMATION ERROR AND ORACLE INEQUALITIES FOR MODEL SELECTION , 2008, Econometric Theory.

[36]  Shahar Mendelson,et al.  Obtaining fast error rates in nonconvex situations , 2008, J. Complex..

[37]  P. Massart,et al.  Statistical performance of support vector machines , 2008, 0804.0551.

[38]  P. Bartlett,et al.  ℓ1-regularized linear regression: persistence and oracle inequalities , 2012 .