Molecular architecture of the rotary motor in ATP synthase.

Adenosine triphosphate (ATP) synthase contains a rotary motor involved in biological energy conversion. Its membrane-embedded F0 sector has a rotation generator fueled by the proton-motive force, which provides the energy required for the synthesis of ATP by the F1 domain. An electron density map obtained from crystals of a subcomplex of yeast mitochondrial ATP synthase shows a ring of 10 c subunits. Each c subunit forms an alpha-helical hairpin. The interhelical loops of six to seven of the c subunits are in close contact with the gamma and delta subunits of the central stalk. The extensive contact between the c ring and the stalk suggests that they may rotate as an ensemble during catalysis.

[1]  Stefano de Gironcoli,et al.  First-principles determination of elastic anisotropy and wave velocities of MgO at lower mantle conditions , 1999, Science.

[2]  K. Stetter,et al.  The Proteolipid of the A1A0ATP Synthase from Methanococcus jannaschii Has Six Predicted Transmembrane Helices but Only Two Proton-translocating Carboxyl Groups* , 1999, The Journal of Biological Chemistry.

[3]  D J DeRosier,et al.  Rotational symmetry of the C ring and a mechanism for the flagellar rotary motor. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. Walker,et al.  Novel features in the structure of bovine ATP synthase. , 1999, Journal of molecular biology.

[5]  R. H. Fillingame,et al.  Structure of the subunit c oligomer in the F1Fo ATP synthase: model derived from solution structure of the monomer and cross-linking in the native enzyme. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Panke,et al.  Kinetic modeling of rotary CF0F1-ATP synthase: storage of elastic energy during energy transduction , 1999, Biochimica et biophysica acta.

[7]  R. H. Fillingame,et al.  Defining the Domain of Binding of F1 Subunit ε with the Polar Loop of F0 Subunit c in theEscherichia coli ATP Synthase* , 1999, The Journal of Biological Chemistry.

[8]  A. Mulkidjanian,et al.  Transient accumulation of elastic energy in proton translocating ATP synthase , 1999, FEBS letters.

[9]  K. Wüthrich,et al.  NMR studies of subunit c of the ATP synthase from Propionigenium modestum in dodecylsulphate micelles. , 1999, European journal of biochemistry.

[10]  J M Carazo,et al.  The three-dimensional structure of a DNA translocating machine at 10 A resolution. , 1999, Structure.

[11]  M. Prescott,et al.  Single Copies of Subunits d, Oligomycin-sensitivity Conferring Protein, and b Are Present in the Saccharomyces cerevisiaeMitochondrial ATP Synthase* , 1999, The Journal of Biological Chemistry.

[12]  K. Pfeiffer,et al.  Yeast mitochondrial F1F0‐ATP synthase exists as a dimer: identification of three dimer‐specific subunits , 1998, The EMBO journal.

[13]  R. H. Fillingame,et al.  Genetic fusions of subunit c in the F0 sector of H+-transporting ATP synthase. Functional dimers and trimers and determination of stoichiometry by cross-linking analysis. , 1998, The Journal of biological chemistry.

[14]  F P Booy,et al.  At sixes and sevens: characterization of the symmetry mismatch of the ClpAP chaperone-assisted protease. , 1998, Journal of structural biology.

[15]  John E Walker,et al.  ATP Synthesis by Rotary Catalysis (Nobel lecture). , 1998, Angewandte Chemie.

[16]  L M Amzel,et al.  The 2.8-A structure of rat liver F1-ATPase: configuration of a critical intermediate in ATP synthesis/hydrolysis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  B. Böttcher,et al.  Direct indication for the existence of a double stalk in CF0F1. , 1998, Journal of molecular biology.

[18]  G. Groth,et al.  Molecular architecture of the c-subunit oligomer in the membrane domain of F-ATPases probed by tryptophan substitution mutagenesis. , 1998, Journal of molecular biology.

[19]  Kazuhiko Kinosita,et al.  Direct Observation of the Rotation of ε Subunit in F1-ATPase* , 1998, The Journal of Biological Chemistry.

[20]  R. Hendrix Bacteriophage DNA Packaging RNA Gears in a DNA Transport Machine , 1998, Cell.

[21]  A. Leslie,et al.  Bovine F1-ATPase covalently inhibited with 4-chloro-7-nitrobenzofurazan: the structure provides further support for a rotary catalytic mechanism. , 1998, Structure.

[22]  R. H. Fillingame,et al.  Arrangement of the Multicopy H+-translocating Subunit c in the Membrane Sector of the Escherichia coliF1F0 ATP Synthase* , 1998, The Journal of Biological Chemistry.

[23]  S. Vik,et al.  Insertion Scanning Mutagenesis of Subunit a of the F1F0 ATP Synthase near His245and Implications on Gating of the Proton Channel* , 1998, The Journal of Biological Chemistry.

[24]  James R. Williams,et al.  Effects of Carbon Source on Expression of Fo Genes and on the Stoichiometry of the c Subunit in the F1Fo ATPase of Escherichia coli , 1998, Journal of bacteriology.

[25]  R. H. Fillingame,et al.  Subunit organization and structure in the F0 sector of Escherichia coli F1F0 ATP synthase. , 1998, Biochimica et biophysica acta.

[26]  R. H. Fillingame,et al.  Interacting helical faces of subunits a and c in the F1Fo ATP synthase of Escherichia coli defined by disulfide cross-linking. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. Girvin,et al.  Solution structure of the transmembrane H+-transporting subunit c of the F1F0 ATP synthase. , 1998, Biochemistry.

[28]  R. Capaldi,et al.  ATP synthase's second stalk comes into focus , 1998, Nature.

[29]  U. Matthey,et al.  Mode of interaction of the single a subunit with the multimeric c subunits during the translocation of the coupling ions by F1F0 ATPases , 1998, The EMBO journal.

[30]  George Oster,et al.  Energy transduction in ATP synthase , 1998, Nature.

[31]  R. H. Fillingame,et al.  On the Role of Arg-210 and Glu-219 of Subunit a in Proton Translocation by the Escherichia coliF0F1-ATP Synthase* , 1997, The Journal of Biological Chemistry.

[32]  H. Kanazawa,et al.  Subunit interactions of Escherichia coli F1-ATPase: mutants of the gamma subunits defective in interaction with the epsilon subunit isolated by the yeast two-hybrid system. , 1997, Archives of biochemistry and biophysics.

[33]  W. Junge,et al.  ATP synthase: an electrochemical transducer with rotatory mechanics. , 1997, Trends in biochemical sciences.

[34]  J. Mitchell Guss,et al.  Crystal structure of the ϵ subunit of the proton-translocating ATP synthase from Escherichia coli , 1997 .

[35]  W. Junge,et al.  ATP synthase: a tentative structural model , 1997, FEBS letters.

[36]  J. Velours,et al.  The subunit f of mitochondrial yeast ATP synthase--characterization of the protein and disruption of the structural gene ATP17. , 1997, European journal of biochemistry.

[37]  M. Prescott,et al.  A novel fluorescent marker for assembled mitochondria ATP synthase of yeast , 1997, FEBS letters.

[38]  G. Groth,et al.  Model of the c‐subunit oligomer in the membrane domain of F‐ATPases , 1997, FEBS letters.

[39]  Jan Pieter Abrahams,et al.  The crystal structure of the nucleotide-free α3β3 subcomplex of F1-ATPase from the thermophilic Bacillus PS3 is a symmetric trimer , 1997 .

[40]  Kazuhiko Kinosita,et al.  Direct observation of the rotation of F1-ATPase , 1997, Nature.

[41]  H. Michel,et al.  Crystallization of membrane proteins. , 1983, Current opinion in structural biology.

[42]  P. Boyer The ATP synthase--a splendid molecular machine. , 1997, Annual review of biochemistry.

[43]  D. Keller,et al.  Topographical structure of membrane‐bound Escherichia coli F1F0 ATP synthase in aqueous buffer , 1996, FEBS letters.

[44]  C. Tang,et al.  The Stalk Region of the Escherichia coli ATP Synthase , 1996, The Journal of Biological Chemistry.

[45]  J. Abrahams,et al.  The structure of bovine F1-ATPase complexed with the peptide antibiotic efrapeptin. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[46]  K Takeyasu,et al.  Molecular imaging of Escherichia coli F0F1‐ATPase in reconstituted membranes using atomic force microscopy , 1996, FEBS letters.

[47]  B. Rumberg,et al.  H+/ATP coupling ratio at the unmodulated CF0CF1-ATP synthase determined by proton flux measurements , 1996 .

[48]  J. Abrahams,et al.  The structure of bovine F1-ATPase complexed with the antibiotic inhibitor aurovertin B. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[49]  M. Prescott,et al.  Entrapment by immobilized metal ion affinity chromatography of assembled yeast mitochondrial ATP synthase containing individual subunits tagged with hexahistidine. , 1996, Analytical biochemistry.

[50]  J. Walker,et al.  The delta- and epsilon-subunits of bovine F1-ATPase interact to form a heterodimeric subcomplex. , 1996, The Biochemical journal.

[51]  M. Giraud,et al.  ATP Synthase of Yeast Mitochondria , 1994, The Journal of Biological Chemistry.

[52]  J. Abrahams,et al.  Methods used in the structure determination of bovine mitochondrial F1 ATPase. , 1996, Acta crystallographica. Section D, Biological crystallography.

[53]  K. Altendorf,et al.  The effects of an atpE ribosome-binding site mutation on the stoichiometry of the c subunit in the F1F0 ATPase of Escherichia coli. , 1995, Archives of biochemistry and biophysics.

[54]  Y. Zhang,et al.  The γ subunit in the Escherichia coli ATP synthase complex (ECF1F0) extends through the stalk and contacts the c subunits of the F0 part , 1995, FEBS letters.

[55]  R. Aggeler,et al.  Disulfide Bond Formation between the COOH-terminal Domain of the Subunits and the and Subunits of the Escherichia coli F-ATPase , 1995, The Journal of Biological Chemistry.

[56]  R. Law,et al.  ATP synthase from Saccharomyces cerevisiae. , 1995, Methods in enzymology.

[57]  J. Walker,et al.  ATP synthase from bovine heart mitochondria. In vitro assembly of a stalk complex in the presence of F1-ATPase and in its absence. , 1994, Journal of molecular biology.

[58]  Jan Pieter Abrahams,et al.  Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria , 1994, Nature.

[59]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[60]  R. E. Mccarty,et al.  Aspects of Subunit Interactions in the Chloroplast ATP Synthase (I. Isolation of a Chloroplast Coupling Factor 1-Subunit III Complex from Spinach Thylakoids) , 1993, Plant physiology.

[61]  P. Jeffrey,et al.  Formation in Vivo, Purification and Crystallization of a Complex of the γ and ε Subunits of the F0F1-ATPase of Escherichia coli , 1993 .

[62]  P. Boyer,et al.  The binding change mechanism for ATP synthase--some probabilities and possibilities. , 1993, Biochimica et biophysica acta.

[63]  R. Law,et al.  Structure/Function Analysis of Yeast Mitochondrial ATP Synthase Subunit 8 a , 1992, Annals of the New York Academy of Sciences.

[64]  David M. Blow,et al.  Microbatch crystallization under oil — a new technique allowing many small-volume crystallization trials , 1992 .

[65]  R. H. Fillingame Subunit c of F1F0 ATP synthase: structure and role in transmembrane energy transduction. , 1992, Biochimica et biophysica acta.

[66]  A. E. Senior The proton-translocating ATPase of Escherichia coli. , 1990, Annual review of biophysics and biophysical chemistry.

[67]  R. H. Fillingame,et al.  Stoichiometry of subunits in the H+-ATPase complex of Escherichia coli. , 1982, The Journal of biological chemistry.

[68]  R. Hendrix,et al.  Symmetry mismatch and DNA packaging in large bacteriophages. , 1978, Proceedings of the National Academy of Sciences of the United States of America.