(1 + εΒ)-spanner constructions for general graphs

An <italic>(α,Β)</italic>-spanner of a graph <italic>G</italic> is a subgraph <italic>H</italic> such that <italic>d_H(u,w)\le &agr\cdot d_G(u,w)+&Bgr</italic> for every pair of vertices <italic>u,w</italic>, where <italic>d_{G'}(u,w)</italic> denotes the distance between two vertices <italic>u</italic> and <italic>v</italic> in <italic>G'</italic>. It is known that every graph <italic>G</italic> has a polynomially constructible <italic>(2&kgr;-1,0)</italic>-spanner (a.k.a. <italic>multiplicative</italic> <italic>(2&kgr;-1)</italic>-spanner) of size <italic>O(n^{1+1/&kgr})</italic> for every integer <italic>&kgr\ge 1</italic>, and a polynomially constructible <italic>(1,2)</italic>-spanner (a.k.a. <italic>additive</italic> 2-spanner) of size <italic>\tO(n^{3/2})</italic>. This paper explores hybrid spanner constructions (involving both multiplicative and additive factors) for general graphs and shows that the multiplicative factor can be made <italic>arbitrarily close to 1</italic> while keeping the spanner size arbitrarily close to <italic>O(n)</italic>, at the cost of allowing the additive term to be a sufficiently large constant. More formally, we show that for any constant <italic>&egr, &dgr > 0</italic> there exists a constant <italic>&Bgr = &Bgr(&egr, &dgr)</italic> such that for every <italic>n</italic>-vertex graph <italic>G</italic> there is an efficiently constructible <italic>(1+ &egr, &Bgr)</italic>-spanner of size <italic>O(n^{1 + &dgr})<italic>. It follows that for any constant <italic>&egr, &dgr > 0</italic> there exists a constant <italic>&Bgr(&egr, &dgr)</italic> such that for any <italic>n</italic>-vertex graph <italic>G = (V,E)</italic> there exists an efficiently constructible subgraph <italic>(V,H)</italic> with <italic>O(n^{1 +&dgr})</italic> edges such that <italic>d_H(u,w) \le (1 + &egr) d_G(u,w) </italic> for every pair of vertices.

[1]  Paul Chew,et al.  There is a planar graph almost as good as the complete graph , 1986, SCG '86.

[2]  David Peleg,et al.  Distributed Computing: A Locality-Sensitive Approach , 1987 .

[3]  David P. Dobkin,et al.  Delaunay graphs are almost as good as complete graphs , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[4]  David Peleg,et al.  An optimal synchronizer for the hypercube , 1987, PODC '87.

[5]  Baruch Awerbuch,et al.  Sparse partitions , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[6]  Rephael Wenger,et al.  Extremal graphs with no C4's, C6's, or C10's , 1991, J. Comb. Theory, Ser. B.

[7]  Giri Narasimhan,et al.  New sparseness results on graph spanners , 1992, SCG '92.

[8]  Guy Kortsarz,et al.  Generating Sparse 2-Spanners , 1992, J. Algorithms.

[9]  Jose Augusto Ramos Soares,et al.  Graph Spanners: a Survey , 1992 .

[10]  Chung-Lun Li,et al.  On the minimum-cardinality-bounded-diameter and the bounded-cardinality-minimum-diameter edge addition problems , 1992, Oper. Res. Lett..

[11]  Arthur L. Liestman,et al.  Grid spanners , 1993, Networks.

[12]  David P. Dobkin,et al.  On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..

[13]  Arthur L. Liestman,et al.  Additive graph spanners , 1993, Networks.

[14]  Uri Zwick,et al.  All-Pairs Almost Shortest Paths , 1997, SIAM J. Comput..

[15]  Dorit S. Hochba,et al.  Approximation Algorithms for NP-Hard Problems , 1997, SIGA.

[16]  Guy Kortsarz On the Hardness of Approximation Spanners , 1998, APPROX.

[17]  Sanjeev Khanna,et al.  Design networks with bounded pairwise distance , 1999, STOC '99.

[18]  DistanceYevgeniy Dodis,et al.  Designing Networks with Bounded Pairwise Distance , 1999 .

[19]  David Peleg,et al.  The Hardness of Approximating Spanner Problems , 2000, STACS.

[20]  Robert D. Carr,et al.  On the red-blue set cover problem , 2000, SODA '00.

[21]  David Peleg,et al.  Strong Inapproximability of the Basic k-Spanner Problem , 2000, ICALP.

[22]  David Peleg,et al.  The Client-Server 2-Spanner Problem with Applications to Network Design , 2001, SIROCCO.

[23]  David Peleg,et al.  Approximating k-Spanner Problems for k>2 , 2001, IPCO.

[24]  Guy Kortsarz On the Hardness of Approximating Spanners , 2001, Algorithmica.