GMRESR : A family of nested GMRES methods Report 91-80

Recently Eirola and Nevanlinna have proposed an iterative solution method for unsymmetric linear systems, in which the preconditioner is updated from step to step. Following their ideas we suggest variants of GMRES, in which a preconditioner is constructed at each iteration step by a suitable approximation process, e.g., by GMRES itself.

[1]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[2]  A. Van SOME OBSERVATIONS ON THE CONVERGENCE BEHAVIOR OF GMRES(II) , 1990 .

[3]  E. Sturler A PARALLEL VARIANT OF GMRES(m) , 1991 .

[4]  C. Vuik Solution of the discretized incompressible Navier‐Stokes equations with the GMRES method , 1993 .

[5]  H. V. D. Vorst,et al.  A comparison of some GMRES-like methods , 1992 .

[6]  I. Gustafsson A class of first order factorization methods , 1978 .

[7]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[8]  O. Axelsson,et al.  A black box generalized conjugate gradient solver with inner iterations and variable-step preconditioning , 1991 .

[9]  D. Hut A Newton Basis Gmres Implementation , 1991 .

[10]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[11]  O. Axelsson,et al.  On the eigenvalue distribution of a class of preconditioning methods , 1986 .

[12]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[13]  H. V. D. Vorst,et al.  High Performance Preconditioning , 1989 .

[14]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[15]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .