Imaging the Meissner effect and flux trapping in a hydride superconductor at megabar pressures using a nanoscale quantum sensor

By directly altering microscopic interactions, pressure provides a powerful tuning knob for the exploration of condensed phases and geophysical phenomena. The megabar regime represents an exciting frontier, where recent discoveries include novel high-temperature superconductors, as well as structural and valence phase transitions. However, at such high pressures, many conventional measurement techniques fail. Here, we demonstrate the ability to perform local magnetometry inside of a diamond anvil cell with sub-micron spatial resolution at megabar pressures. Our approach utilizes a shallow layer of Nitrogen-Vacancy (NV) color centers implanted directly within the anvil; crucially, we choose a crystal cut compatible with the intrinsic symmetries of the NV center to enable functionality at megabar pressures. We apply our technique to characterize a recently discovered hydride superconductor, CeH$_9$. By performing simultaneous magnetometry and electrical transport measurements, we observe the dual signatures of superconductivity: local diamagnetism characteristic of the Meissner effect and a sharp drop of the resistance to near zero. By locally mapping the Meissner effect and flux trapping, we directly image the geometry of superconducting regions, revealing significant inhomogeneities at the micron scale. Our work brings quantum sensing to the megabar frontier and enables the closed loop optimization of superhydride materials synthesis.

[1]  Ningning Wang,et al.  Pressure-Induced Color Change in the Lutetium Dihydride LuH2 , 2023, Chinese Physics Letters.

[2]  J. Bass,et al.  Superconductivity above 70 K observed in lutetium polyhydrides , 2023, Science China Physics, Mechanics & Astronomy.

[3]  S. Dissanayake,et al.  Evidence of near-ambient superconductivity in a N-doped lutetium hydride , 2023, Nature.

[4]  J. Roch,et al.  NV center magnetometry up to 130 GPa as if at ambient pressure , 2023, 2301.05094.

[5]  C. Tian,et al.  Recent Advances on Applications of NV- Magnetometry in Condensed Matter Physics , 2023, Photonics Research.

[6]  V. Prakapenka,et al.  Superconductivity Observed in Tantalum Polyhydride at High Pressure , 2022, Chinese Physics Letters.

[7]  Yu Xie,et al.  High-Temperature Superconducting Phase in Clathrate Calcium Hydride CaH_{6} up to 215 K at a Pressure of 172 GPa. , 2022, Physical review letters.

[8]  M. Mezouar,et al.  Evidence and Stability Field of fcc Superionic Water Ice Using Static Compression. , 2022, Physical review letters.

[9]  H. Mao,et al.  Future Study of Dense Superconducting Hydrides at High Pressure , 2021, Materials.

[10]  Y. Yin,et al.  Possible Superconductivity at ∼70 K in Tin Hydride SnHx under High Pressure , 2021, Materials Today Physics.

[11]  E. R. Margine,et al.  The 2021 room-temperature superconductivity roadmap , 2021, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  Xiaoli Huang,et al.  High-Temperature Superconducting Phases in Cerium Superhydride with a T_{c} up to 115 K below a Pressure of 1 Megabar. , 2021, Physical review letters.

[13]  S. Mozaffari,et al.  Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure , 2021, Nature Communications.

[14]  N. Yao,et al.  Characterizing two-dimensional superconductivity via nanoscale noise magnetometry with single-spin qubits , 2021, Physical Review B.

[15]  J. Bass,et al.  Superconductivity above 200 K discovered in superhydrides of calcium , 2021, Nature Communications.

[16]  E. Zurek,et al.  Synthesis of Yttrium Superhydride Superconductor with a Transition Temperature up to 262 K by Catalytic Hydrogenation at High Pressures. , 2021, Physical review letters.

[17]  M. Calandra,et al.  Anomalous High‐Temperature Superconductivity in YH6 , 2021, Advanced materials.

[18]  J. Hirsch,et al.  Absence of magnetic evidence for superconductivity in hydrides under high pressure , 2021, Physica C: Superconductivity and its Applications.

[19]  A. Oganov,et al.  Superconductivity at 253 K in lanthanum–yttrium ternary hydrides , 2020, Materials Today.

[20]  Jinguang Cheng,et al.  Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures , 2020 .

[21]  P. Dumas,et al.  Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen , 2020, Nature.

[22]  Bowen Zhang,et al.  Persistent insulating state at megabar pressures in strongly spin-orbit coupled Sr2IrO4 , 2019, Physical Review B.

[23]  Xiaoli Huang,et al.  High-temperature superconductivity in sulfur hydride evidenced by alternating-current magnetic susceptibility , 2019, National science review.

[24]  Xiaoli Huang,et al.  Superconducting praseodymium superhydrides , 2019, Science Advances.

[25]  T. Shibauchi,et al.  Measuring magnetic field texture in correlated electron systems under extreme conditions , 2018, Science.

[26]  J. Roch,et al.  Magnetic measurements on micrometer-sized samples under high pressure using designed NV centers , 2018, Science.

[27]  R. Jeanloz,et al.  Imaging stress and magnetism at high pressures using a nanoscale quantum sensor , 2018, Science.

[28]  D. Graf,et al.  Superconductivity at 250 K in lanthanum hydride under high pressures , 2018, Nature.

[29]  R. Hemley,et al.  Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures. , 2018, Physical review letters.

[30]  H. Mao,et al.  Solids, liquids, and gases under high pressure , 2018 .

[31]  A. Yacoby,et al.  Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond , 2018, 1804.08742.

[32]  A. Pines,et al.  Optically detected magnetic resonance of nitrogen vacancies in a diamond anvil cell using designer diamond anvils , 2017, 1709.03587.

[33]  S. L. Bud'ko,et al.  Spatially-resolved study of the Meissner effect in superconductors using NV-centers-in-diamond optical magnetometry , 2017, 1709.02769.

[34]  Richard L. Taylor,et al.  Nanomechanical Sensing Using Spins in Diamond. , 2016, Nano letters.

[35]  A. P. Drozdov,et al.  Superconductivity above 100 K in PH3 at high pressures , 2015, 1508.06224.

[36]  A. P. Drozdov,et al.  Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system , 2015, Nature.

[37]  N. Yao,et al.  State-selective intersystem crossing in nitrogen-vacancy centers , 2014, 1412.4865.

[38]  B. Myers,et al.  Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator , 2014, Nature Communications.

[39]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[40]  L. Hollenberg,et al.  Electric-field sensing using single diamond spins , 2011 .

[41]  D Budker,et al.  Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. , 2009, Physical review letters.

[42]  V. Struzhkin,et al.  Miniature diamond anvil cell for broad range of high pressure measurements. , 2009, The Review of scientific instruments.

[43]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[44]  A. Oganov,et al.  Valence state and spin transitions of iron in Earth's mantle silicates , 2006 .

[45]  N. Ashcroft Hydrogen dominant metallic alloys: high temperature superconductors? , 2004, Physical review letters.

[46]  M. F. Hamer,et al.  Optical studies of the 1.945 eV vibronic band in diamond , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[47]  N. Ashcroft,et al.  METALLIC HYDROGEN: A HIGH-TEMPERATURE SUPERCONDUCTOR. , 1968 .

[48]  Y. Xu 徐,et al.  Optically Detected Magnetic Resonance of Diamond Nitrogen-Vacancy Centers under Megabar Pressures , 2022 .

[49]  H. Alloul Introduction to Superconductivity , 2011 .

[50]  松下 照男,et al.  Flux pinning in superconductors , 2007 .

[51]  J. M. Miller,et al.  Synthesis and properties of , 2002 .