Calibration of GARCH models using concurrent accelerated random search

This paper investigates a global optimization algorithm for the calibration of stochastic volatility models. Two GARCH models are considered, namely the Leverage and the Heston-Nandi model. Empirical information on option prices is used to minimize a loss function that reflects the option pricing error. It is shown that commonly used gradient based optimization procedures may not lead to a good solution and often converge to a local optimum. A concurrent approach where several optimizers ("particles") execute an accelerated random search (ARS) procedure has been introduced to thoroughly explore the whole parameter domain. The number of particles influences the solution quality and computation time, leading to a trade-off between these two factors. In order to speed up the computation, distributed computing and variance reduction techniques are employed. Tests show that the concurrent ARS approach clearly outperforms the standard gradient based method.

[1]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[2]  Eric Renault,et al.  A Note on Hedging in ARCH and Stochastic Volatility Option Pricing Models , 1998 .

[3]  Peter Christoffersen,et al.  Dynamic jump intensities and risk premiums: Evidence from S&P500 returns and options , 2012 .

[4]  Tommi Mikkonen,et al.  Use of distributed computing in derivative pricing , 2009 .

[5]  Bjørn Eraker Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices , 2004 .

[6]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[7]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[8]  Peter Christoffersen,et al.  Série Scientifique Scientific Series Option Valuation with Conditional Skewness Option Valuation with Conditional Skewness , 2022 .

[9]  E. Ghysels,et al.  A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation , 2000 .

[10]  T. Ouarda,et al.  Generalized autoregressive conditional heteroscedasticity modelling of hydrologic time series , 2012 .

[11]  Max E. Jerrell,et al.  Global Optimization of Econometric Functions , 2001, J. Glob. Optim..

[12]  R. Chou,et al.  ARCH modeling in finance: A review of the theory and empirical evidence , 1992 .

[13]  Charles E. Taylor Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Complex Adaptive Systems.John H. Holland , 1994 .

[14]  J. Kanniainen,et al.  Stock Price Dynamics and Option Valuations under Volatility Feedback Effect , 2012, 1209.4718.

[15]  Jin-Chuan Duan,et al.  Jump Starting GARCH: Pricing and Hedging Options With Jumps in Returns and Volatilities , 2006 .

[16]  Dawn Hunter Non-parametric calibration of jump–diffusion option pricing models , 2004 .

[17]  Jun Ma,et al.  Spurious Inference in the GARCH (1,1) Model When It Is Weakly Identified , 2006 .

[18]  J. Duan,et al.  Série Scientifique Scientific Series Empirical Martingale Simulation for Asset Prices Empirical Martingale Simulation for Asset Prices , 2022 .

[19]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[20]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[21]  Kris Jacobs,et al.  Which Volatility Model for Option Valuation , 2002 .

[22]  Liuren Wu,et al.  Specification Analysis of Option Pricing Models Based on Time-Changed Levy Processes , 2003 .

[23]  J. Kanniainen,et al.  Stock Price Dynamics, Dividends, and Option Prices with Volatility Feedback , 2012 .

[24]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[25]  Peter H. Ritchken,et al.  Pricing Options under Generalized GARCH and Stochastic Volatility Processes , 1999 .

[26]  J. Duan THE GARCH OPTION PRICING MODEL , 1995 .

[27]  Peter F. Christoffersen,et al.  Option Valuation with Long-Run and Short-Run Volatility Components , 2008 .

[28]  R. Engle,et al.  A GARCH Option Pricing Model with Filtered Historical Simulation , 2008 .

[29]  S. Heston,et al.  A Closed-Form GARCH Option Valuation Model , 2000 .

[30]  Robert Piché,et al.  Mixture surrogate models based on Dempster-Shafer theory for global optimization problems , 2011, J. Glob. Optim..

[31]  David S. Bates Post-'87 crash fears in the S&P 500 futures option market , 2000 .

[32]  M. J. Appel,et al.  On Accelerated Random Search , 2003, SIAM J. Optim..

[33]  Laerte Sorini,et al.  Testing robustness in calibration of stochastic volatility models , 2005, Eur. J. Oper. Res..