NEW SPATIALLY RESOLVED OBSERVATIONS OF THE T Cha TRANSITION DISK AND CONSTRAINTS ON THE PREVIOUSLY CLAIMED SUBSTELLAR COMPANION

We present multi-epoch non-redundant masking observations of the T Cha transition disk, taken at the VLT and Magellan in H, Ks, and L' bands. T Cha is one of a small number of transition disks that host companion candidates discovered by high-resolution imaging techniques, with a putative companion at a position angle of 78 degrees, separation of 62 mas, and contrast at L' of 5.1 mag. We find comparable binary parameters in our re-reduction of the initial detection images, and similar parameters in the 2011 L', 2013 NaCo L', and 2013 NaCo Ks data sets. We find a close-in companion signal in the 2012 NaCo L' dataset that cannot be explained by orbital motion, and a non-detection in the 2013 MagAO/Clio2 L' data. However, Monte-carlo simulations show that the best fits to the 2012 NaCo and 2013 MagAO/Clio2 followup data may be consistent with noise. There is also a significant probability of false non-detections in both of these data sets. We discuss physical scenarios that could cause the best fits, and argue that previous companion and scattering explanations are inconsistent with the results of the much larger dataset presented here.

[1]  D. Lin,et al.  On the tidal interaction between protoplanets and the protoplanetary disk. III. Orbital migration of protoplanets , 1986 .

[2]  Barbara Ercolano,et al.  Protoplanetary disc evolution and dispersal: the implications of X-ray photoevaporation , 2010, 1010.0826.

[3]  S. Esposito,et al.  DIFFRACTION-LIMITED VISIBLE LIGHT IMAGES OF ORION TRAPEZIUM CLUSTER WITH THE MAGELLAN ADAPTIVE SECONDARY ADAPTIVE OPTICS SYSTEM (MagAO) , 2013, 1308.4155.

[4]  B. Ercolano,et al.  Radiation-hydrodynamic models of X-ray and EUV photoevaporating protoplanetary discs , 2009, 0909.4309.

[5]  J. Augereau,et al.  Cold Disks: Spitzer Spectroscopy of Disks around Young Stars with Large Gaps , 2007, 0707.0304.

[6]  A. Oka,et al.  Observational Possibility of the "Snow Line" on the Surface of Circumstellar Disks with the Scattered Light , 2008, 0802.0906.

[7]  David Mouillet,et al.  NAOS, the first AO system of the VLT: on-sky performance , 2003, SPIE Astronomical Telescopes + Instrumentation.

[8]  L. Fouchet,et al.  Planet gaps in the dust layer of 3D protoplanetary disks - I. Hydrodynamical simulations of T Tauri disks , 2010, 1005.4557.

[9]  Tyson Hare,et al.  MagAO: Status and on-sky performance of the Magellan adaptive optics system , 2014, Astronomical Telescopes and Instrumentation.

[10]  Frantz Martinache,et al.  MAPPING THE SHORES OF THE BROWN DWARF DESERT. II. MULTIPLE STAR FORMATION IN TAURUS–AURIGA , 2011, 1101.4016.

[11]  A. Königl,et al.  A DISK-WIND MODEL FOR THE NEAR-INFRARED EXCESS EMISSION IN PROTOSTARS , 2012, 1207.1508.

[12]  Richard P. Nelson,et al.  Tidally Induced Gap Formation in Protostellar Disks: Gap Clearing and Suppression of Protoplanetary Growth , 1999 .

[13]  C. Dullemond,et al.  EVIDENCE FOR DUST CLEARING THROUGH RESOLVED SUBMILLIMETER IMAGING , 2008, 0802.0998.

[14]  Michael F. Skrutskie,et al.  Circumstellar Material Associated with Solar-Type Pre-Main-Sequence Stars: A Possible Constraint on the Timescale for Planet Building , 1989 .

[15]  David Wilner,et al.  Evidence for a Developing Gap in a 10 Myr Old Protoplanetary Disk , 2002 .

[16]  G. Chauvin,et al.  A companion candidate in the gap of the T Chamaeleontis transitional disk , 2011, 1102.4982.

[17]  Katherine Rosenfeld,et al.  AN AZIMUTHAL ASYMMETRY IN THE LkHα 330 DISK , 2013, 1307.5848.

[18]  Accretion Disks around Young Objects. I. The Detailed Vertical Structure , 1998, astro-ph/9806060.

[19]  A. Lagrange,et al.  Sparse aperture masking at the VLT. I. Faint companion detection limits for the two debris disk stars HD 92945 and HD 141569 , 2011, 1107.1426.

[20]  L. Hartmann,et al.  HD 98800: A 10 Myr Old Transition Disk , 2007, 0705.0380.

[21]  L. Hartmann,et al.  Probing the Dust and Gas in the Transitional Disk of CS Cha with Spitzer , 2007, 0707.0019.

[22]  C. Dominik,et al.  UvA-DARE ( Digital Academic Repository ) Flaring vs . self-shadowed disks : The SEDs of Herbig Ae / Be stars , 2004 .

[23]  S. Ida,et al.  Dust Growth and Settling in Protoplanetary Disks and Disk Spectral Energy Distributions. I. Laminar Disks , 2005, astro-ph/0502287.

[24]  H. F. Astrophysics,et al.  X-Ray-Irradiated Protoplanetary Disk Atmospheres. I. Predicted Emission-Line Spectrum and Photoevaporation , 2008, 0805.4625.

[25]  X-RAY PHOTOEVAPORATION-STARVED T TAURI ACCRETION , 2009, 0905.1690.

[26]  L. Sparke,et al.  Geometrical and physical properties of circumbinary discs in eccentric stellar binaries , 2008, 0809.1124.

[27]  B. Draine,et al.  On the Submillimeter Opacity of Protoplanetary Disks , 2005, astro-ph/0507292.

[28]  A. Morbidelli,et al.  On the width and shape of gaps in protoplanetary disks , 2006 .

[29]  B. Ercolano,et al.  Can grain growth explain transition disks , 2012, 1206.5802.

[30]  C. Clarke,et al.  The dispersal of circumstellar discs: the role of the ultraviolet switch , 2001 .

[31]  Sao,et al.  Effects of Dust Growth and Settling in T Tauri Disks , 2005, astro-ph/0511564.

[32]  Andrew H. Breuninger,et al.  Clio: a 3-5 micron AO planet-finding camera , 2006, SPIE Astronomical Telescopes + Instrumentation.

[33]  Rainer Lenzen CONICA: Coude near-infrared camera for the ESO VLT , 1993, Defense, Security, and Sensing.

[34]  M. Ireland,et al.  LkCa 15: A YOUNG EXOPLANET CAUGHT AT FORMATION? , 2011, 1110.3808.

[35]  L. Hartmann,et al.  Disks in Transition in the Taurus Population: Spitzer IRS Spectra of GM Aurigae and DM Tauri , 2005 .

[36]  M. Ireland,et al.  The Disk Around CoKu Tauri/4: Circumbinary, Not Transitional , 2008, 0803.2044.

[37]  John D. Monnier,et al.  Monte-Carlo imaging for optical interferometry , 2020, SPIE Astronomical Telescopes + Instrumentation.

[38]  The effect of scattering on the structure and SED of protoplanetary disks , 2003, astro-ph/0305451.

[39]  C. Clarke,et al.  Photoevaporation of protoplanetary discs - II. Evolutionary models and observable properties , 2006 .

[40]  L. Hartmann,et al.  The State of Protoplanetary Material 10 Million years after Stellar Formation: Circumstellar Disks in the TW Hydrae Association , 2004, astro-ph/0406138.

[41]  C. A. Grady,et al.  DISCOVERY OF SMALL-SCALE SPIRAL STRUCTURES IN THE DISK OF SAO 206462 (HD 135344B): IMPLICATIONS FOR THE PHYSICAL STATE OF THE DISK FROM SPIRAL DENSITY WAVE THEORY , 2012, 1202.6139.

[42]  M. Esposito,et al.  Variability of the transitional T Tauri star T Chamaeleontis , 2009, 0904.0101.

[43]  Wesley A. Traub,et al.  Sculpting the disk around T Chamaeleontis: an interferometric view , 2013 .

[44]  O. Guyon,et al.  THE MISSING CAVITIES IN THE SEEDS POLARIZED SCATTERED LIGHT IMAGES OF TRANSITIONAL PROTOPLANETARY DISKS: A GENERIC DISK MODEL , 2012, 1203.1612.

[45]  Warm dust resolved in the cold disk around T Chamaeleontis with VLTI/AMBER , 2011, 1102.4976.

[46]  Andrea Isella,et al.  LARGE-SCALE ASYMMETRIES IN THE TRANSITIONAL DISKS OF SAO 206462 AND SR 21 , 2014 .

[47]  Spitzer Science Center,et al.  The HD 163296 Circumstellar Disk in Scattered Light: Evidence of Time-Variable Self-Shadowing , 2008, 0807.1766.

[48]  Michael R. Meyer,et al.  Clio: a 5-μm camera for the detection of giant exoplanets , 2004, SPIE Astronomical Telescopes + Instrumentation.

[49]  Catherine Espaillat,et al.  RESOLVED IMAGES OF LARGE CAVITIES IN PROTOPLANETARY TRANSITION DISKS , 2011, 1103.0284.

[50]  S. Lubow,et al.  Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes , 1994 .

[51]  William H. Press,et al.  Numerical recipes in C , 2002 .

[52]  T. Henning,et al.  Planetesimal formation by sweep-up: how the bouncing barrier can be beneficial to growth , 2012, 1201.4282.

[53]  John D. Monnier,et al.  RESOLVING THE GAP AND AU-SCALE ASYMMETRIES IN THE PRE-TRANSITIONAL DISK OF V1247 ORIONIS , 2013, 1304.2768.

[54]  J. Pollack,et al.  A calculation of the Rosseland mean opacity of dust grains in primordial solar system nebulae , 1985 .

[55]  Frantz Martinache,et al.  KERNEL PHASE IN FIZEAU INTERFEROMETRY , 2010 .

[56]  L. Hartmann,et al.  On the Diversity of the Taurus Transitional Disks: UX Tauri A and LkCa 15 , 2007, 0710.2892.

[57]  C. Marois,et al.  Efficient Speckle Noise Attenuation in Faint Companion Imaging , 2000 .

[58]  Stephen E. Strom,et al.  Demographics of Transition Objects , 2007, 0704.1681.

[59]  Jonathan P. Williams,et al.  A SPATIALLY RESOLVED INNER HOLE IN THE DISK AROUND GM AURIGAE , 2009, 0903.4455.

[60]  Frantz Martinache,et al.  MAPPING THE SHORES OF THE BROWN DWARF DESERT. III. YOUNG MOVING GROUPS , 2011, 1109.5900.

[61]  Adam L. Kraus,et al.  SPARSE APERTURE MASKING OBSERVATIONS OF THE FL Cha PRE-TRANSITIONAL DISK , 2012, 1211.5721.

[62]  Thomas P. Robitaille,et al.  HYPERION: an open-source parallelized three-dimensional dust continuum radiative transfer code , 2011, 1112.1071.

[63]  P. Armitage,et al.  Dust dynamics during protoplanetary disc clearing , 2007 .

[64]  T. Prusti,et al.  A SPITZER c2d LEGACY SURVEY TO IDENTIFY AND CHARACTERIZE DISKS WITH INNER DUST HOLES , 2010, 1008.2428.

[65]  C. Marois,et al.  A NEW ALGORITHM FOR POINT SPREAD FUNCTION SUBTRACTION IN HIGH-CONTRAST IMAGING: A DEMONSTRATION WITH ANGULAR DIFFERENTIAL IMAGING , 2007 .

[66]  R. Puetter,et al.  Variability of Disk Emission in Pre-Main-Sequence and Related Stars. I. HD 31648 and HD 163296: Isolated Herbig Ae Stars Driving Herbig-Haro Flows , 2007, 0712.4014.

[67]  C. Dominik,et al.  Dust coagulation in protoplanetary disks: A rapid depletion of small grains , 2004, astro-ph/0412117.

[68]  Michael J. Ireland,et al.  Phase errors in diffraction-limited imaging: contrast limits for sparse aperture masking , 2013 .

[69]  Statistics, Handle with Care: Detecting Multiple Model Components with the Likelihood Ratio Test , 2002, astro-ph/0201547.