Solar activity impact on the Earth’s upper atmosphere

The paper describes results of the studies devoted to the solar activity impact on the Earth’s upper atmosphere and ionosphere, conducted within the frame of COST ES0803 Action.Aim : The aim of the paper is to represent results coming from different research groups in a unified form, aligning their specific topics into the general context of the subject.Methods : The methods used in the paper are based on data-driven analysis. Specific databases are used for spectrum analysis, empirical modeling, electron density profile reconstruction, and forecasting techniques.Results: Results are grouped in three sections: Medium- and long-term ionospheric response to the changes in solar and geomagnetic activity, storm-time ionospheric response to the solar and geomagnetic forcing, and modeling and forecasting techniques.Section 1 contains five subsections with results on 27-day response of low-latitude ionosphere to solar extreme-ultraviolet (EUV) radiation, response to the recurrent geomagnetic storms, long-term trends in the upper atmosphere, latitudinal dependence of total electron content on EUV changes, and statistical analysis of ionospheric behavior during prolonged period of solar activity.Section 2 contains a study of ionospheric variations induced by recurrent CIR-driven storm, a case-study of polar cap absorption due to an intense CME, and a statistical study of geographic distribution of so-called E-layer dominated ionosphere.Section 3 comprises empirical models for describing and forecasting TEC, the F-layer critical frequency foF 2, and the height of maximum plasma density. A study evaluates the usefulness of effective sunspot number in specifying the ionosphere state. An original method is presented, which retrieves the basic thermospheric parameters from ionospheric sounding data.

[1]  N. Gopalswamy,et al.  Long‐lived geomagnetic storms and coronal mass ejections , 2006 .

[2]  J. M. Picone,et al.  Thermospheric global average density trends, 1967–2007, derived from orbits of 5000 near‐Earth objects , 2008 .

[3]  Trends in the Neutral and Ionized Upper Atmosphere , 2012 .

[4]  Konstantinos Koutroumbas,et al.  Time series autoregression technique implemented on-line in DIAS system for ionospheric forecast over Europe , 2008 .

[5]  Dora Pancheva,et al.  Variability in the maximum height of the ionospheric F2-layer over Millstone Hill (September 1998–March 2000); influence from below and above , 2002 .

[6]  E. W. Maunder Magnetic Disturbances, 1882 to 1903, as recorded at the Royal Observatory, Greenwich, and their Association with Sun-spots , 1904 .

[7]  Bodo W. Reinisch,et al.  Automatic calculation of electron density profiles from digital ionograms: 3. Processing of bottomside ionograms , 1983 .

[8]  Bruno Zolesi,et al.  Evaluation of the performance of the real-time updated simplified ionospheric regional model for the European area , 2005 .

[9]  I. Tsagouri,et al.  A new empirical model of middle latitude ionospheric response for space weather applications , 2006 .

[10]  Volker Wilken,et al.  Total electron content models and their use in ionosphere monitoring , 2010 .

[11]  J. Laštovička Global pattern of trends in the upper atmosphere and ionosphere: Recent progress , 2009 .

[12]  Ljiljana R. Cander,et al.  Large scale ionospheric gradients over Europe observed in October 2003 , 2008 .

[13]  K. Mursula,et al.  Centennial increase in geomagnetic activity: Latitudinal differences and global estimates , 2006 .

[14]  Stefan Heise,et al.  Sounding of the topside ionosphere/plasmasphere based on GPS measurements from CHAMP: Initial results , 2002 .

[15]  B. T. Marshall,et al.  Observations of infrared radiative cooling in the thermosphere on , 2010 .

[16]  Y. Otsuka,et al.  Response of low-latitude ionosphere to medium-term changes of solar and geomagnetic activity , 2012 .

[17]  Timothy Fuller-Rowell,et al.  STORM: An empirical storm‐time ionospheric correction model 1. Model description , 2002 .

[18]  Ljiljana R. Cander,et al.  Geomagnetically correlated autoregression model for short-term prediction of ionospheric parameters , 2002 .

[19]  R. Roble,et al.  Model simulations of global change in the ionosphere , 2008 .

[20]  P. Mukhtarov,et al.  Wavelet analysis on transient behaviour of tidal amplitude fluctuations observed by meteor radar in the lower thermosphere above Bulgaria , 2000 .

[21]  Ioanna Tsagouri,et al.  Evaluation of the performance of DIAS ionospheric forecasting models , 2011 .

[22]  P. Mukhtarov,et al.  Thermosphere-ionosphere coupling in response to recurrent geomagnetic activity , 2012 .

[23]  J. Laštovička,et al.  Progress in observations and simulations of global change in the upper atmosphere , 2011 .

[24]  J. Bartels Twenty-seven day recurrences in terrestrial-magnetic and solar activity, 1923–1933 , 1934 .

[25]  G. Beig,et al.  Global Change in the Upper Atmosphere , 2006, Science.

[26]  R. Nerem,et al.  Thermospheric density oscillations due to periodic solar wind high- speed streams , 2008 .

[27]  S. Poedts,et al.  Linking two consecutive nonmerging magnetic clouds with their solar sources , 2009, 1212.5546.

[28]  C. Torrence,et al.  A Practical Guide to Wavelet Analysis. , 1998 .

[29]  J. M. Torta,et al.  Proposal of new models of the bottom-side B0 and B1 parameters for IRI , 2009 .

[30]  D. Altadill,et al.  Origin and development of vertical propagating oscillations with periods of planetary waves in the ionospheric F region , 2001 .

[31]  Bodo W. Reinisch,et al.  International Reference Ionosphere 2000 , 2001 .

[32]  Boubeker Belabbas,et al.  Ionosphere Threat Space Model Assessment for GBAS , 2009 .

[33]  Y. Kasahara,et al.  Corotating solar wind streams and recurrent geomagnetic activity: A review , 2006 .

[34]  H. P. Warren,et al.  A new model of solar EUV irradiance variability 2. Comparisons with empirical models and observations and implications for space weather , 2003 .

[35]  M. Damasso,et al.  Study on solar sources and polar cap absorption events recorded in Antarctica , 2009 .

[36]  Dieter Bilitza,et al.  International reference ionosphere , 1978 .

[37]  Bruno Zolesi,et al.  Real‐time updating of the Simplified Ionospheric Regional Model for operational applications , 2004 .

[38]  S. Watanabe,et al.  Total electron content behavior over Japan during geomagnetic storms , 2005 .

[39]  Astrid M. Veronig,et al.  Coronal Holes and Solar Wind High-Speed Streams: I. Forecasting the Solar Wind Parameters , 2007 .

[40]  M. Denton,et al.  Modification of midlatitude ionospheric parameters in the F2 layer by persistent high‐speed solar wind streams , 2009 .

[41]  M. Rypdal,et al.  The E region at 69°N, 19°E: Trends, significances, and detectability , 2011 .

[42]  Bruno Zolesi,et al.  Retrieval of thermospheric parameters from routine ionospheric observations: assessment of method’s performance at mid-latitudes daytime hours , 2012 .

[43]  Norbert Jakowski,et al.  TEC Monitoring by Using Satellite Positioning Systems , 1996 .

[44]  M. Temmer,et al.  Periodic Appearance of Coronal Holes and the Related Variation of Solar Wind Parameters , 2007 .

[45]  Norbert Jakowski,et al.  Enhanced E-layer ionization in the auroral zones observed by radio occultation measurements onboard CHAMP and Formosat-3/COSMIC , 2007 .

[46]  B. Morena,et al.  Ionospheric peak height behavior for low, middle and high latitudes: A potential empirical model for quiet conditions—Comparison with the IRI-2007 model , 2011 .

[47]  J. Bremer,et al.  Climate of the upper atmosphere , 2009 .

[48]  R. Steven Nerem,et al.  Rotating solar coronal holes and periodic modulation of the upper atmosphere , 2008 .

[49]  Norbert Jakowski,et al.  Solar activity control of ionospheric and thermospheric processes , 1991 .

[50]  David Altadill,et al.  Time and scale size of planetary wave signatures in the ionospheric F region: Role of the geomagnetic activity and mesosphere/lower thermosphere winds , 2003 .

[51]  J. Borovsky,et al.  Differences between CME‐driven storms and CIR‐driven storms , 2006 .

[52]  Bruno Zolesi,et al.  DIAS effective sunspot number as an indicator of the ionospheric activity level over Europe , 2010 .

[53]  T. Woods,et al.  Anomalously low solar extreme‐ultraviolet irradiance and thermospheric density during solar minimum , 2010 .

[54]  Jie Zhang,et al.  Correction to “Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996–2005” , 2007 .

[55]  R. E. Thompson,et al.  Solar‐terrestrial coupling evidenced by periodic behavior in geomagnetic indexes and the infrared energy budget of the thermosphere , 2008 .

[56]  C. Cid,et al.  Forecasting intense geomagnetic activity using interplanetary magnetic field data , 2008 .

[57]  A. Belehaki,et al.  An upgrade of the solar-wind-driven empirical model for the middle latitude ionospheric storm-time response , 2008 .

[58]  D. Altadill,et al.  Midlatitude F region peak height changes in response to interplanetary magnetic field conditions and modeling results , 2012 .

[59]  Pencho Marinov,et al.  Comparison of the topside ionosphere scale height determined by topside sounders model and bottomside digisonde profiles , 2006 .