Existence and Uniqueness of Viscosity Solutions of an Integro-differential Equation Arising in Option Pricing

We prove the existence and uniqueness of the viscosity solution of an integro-differential equation (IDE) arising in the pricing of American-style multi-asset options in a multivariate Ornstein--Uh...

[1]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[2]  Erik Ekström,et al.  The Black–Scholes equation in stochastic volatility models , 2010 .

[3]  R. Jensen The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations , 1988 .

[4]  J. Kallsen,et al.  A Non‐Gaussian Ornstein–Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing , 2007 .

[5]  Hitoshi Ishii,et al.  The maximum principle for semicontinuous functions , 1990, Differential and Integral Equations.

[6]  Viscosity Solutions and American Option Pricing in a Stochastic Volatility Model of the Ornstein-Uhlenbeck Type , 2008, 0812.2444.

[7]  Johannes Muhle-Karbe,et al.  Option Pricing in Multivariate Stochastic Volatility Models of OU Type , 2010, SIAM J. Financial Math..

[8]  Guy Barles,et al.  Option pricing with transaction costs and a nonlinear Black-Scholes equation , 1998, Finance Stochastics.

[9]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[10]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[11]  R. Stelzer,et al.  On the definition, stationary distribution and second order structure of positive semidefinite Ornstein–Uhlenbeck type processes , 2009, 0909.0851.

[12]  G. Barles,et al.  Second-order elliptic integro-differential equations: viscosity solutions' theory revisited , 2007, math/0702263.

[13]  D. Heath,et al.  Martingales versus PDEs in finance: an equivalence result with examples , 2000, Journal of Applied Probability.

[14]  H. Ishii On uniqueness and existence of viscosity solutions of fully nonlinear second‐order elliptic PDE's , 1989 .

[15]  K. Karlsen,et al.  Merton's portfolio optimization problem in a Black and Scholes market with non‐Gaussian stochastic volatility of Ornstein‐Uhlenbeck type , 2003 .

[16]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[17]  O. Barndorff-Nielsen,et al.  THE MULTIVARIATE supOU STOCHASTIC VOLATILITY MODEL , 2009 .

[18]  Mark H. A. Davis,et al.  European option pricing with transaction costs , 1993 .

[19]  Matrix Subordinators and Related Upsilon Transformations , 2008 .

[20]  E. Nicolato,et al.  Option Pricing in Stochastic Volatility Models of the Ornstein‐Uhlenbeck type , 2003 .

[21]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[22]  Rama Cont,et al.  Integro-differential equations for option prices in exponential Lévy models , 2005, Finance Stochastics.