Development of a high performance protective barrier utilising non-composite steel-concrete-steel panels

...................................................................................................... xxix ACKNOWLEDGMENTS ................................................................................xxxii PUBLICATION LIST .................................................................................... xxxiii CHAPTER

[1]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[2]  J. D. Campbell,et al.  Tensile Testing of Materials at Impact Rates of Strain , 1960 .

[3]  John M. Biggs,et al.  Introduction to Structural Dynamics , 1964 .

[4]  R. Park Tensile membrane behaviour of uniformly loaded rectangular reinforced concrete slabs with fully restrained edges , 1964 .

[5]  N. Jones Influence of in-plane displacements at the boundaries of rigid-plastic beams and plates , 1973 .

[6]  T. I. Campbell,et al.  Finite deformation of a fully fixed beam comprised of a non-linear material , 1973 .

[7]  J. Steichen High Strain Rate Tensile Properties of AISI Type 304 Stainless Steel , 1973 .

[8]  P. Hodge Post-yield behavior of a beam with partial end fixity , 1974 .

[9]  M. Forrestal,et al.  Elastic-Plastic Response of 304 Stainless Steel Beams to Impulse Loads , 1978 .

[10]  T. Nicholas Tensile testing of materials at high rates of strain , 1981 .

[11]  R. Park,et al.  Reinforced Concrete Slabs , 1981 .

[12]  G. Plauk Concrete structures under impact and impulsive loading , 1982 .

[13]  Mary E Beyer Blast Loads Behind Vertical Walls , 1986 .

[14]  T. Z. Blazynski Materials at high strain rates , 1987 .

[15]  T. Oduyemi,et al.  An experimental investigation into the behaviour of double-skin sandwich beams , 1989 .

[16]  B. Ronalds Membrane action in the beam mechanism , 1990 .

[17]  H. D. Wright,et al.  The experimental behaviour of double skin composite elements , 1991 .

[18]  M. Y. H. Bangash Impact and explosion : analysis and design , 1993 .

[19]  Mark A. Bradford,et al.  Composite Steel and Concrete Structural Members: Fundamental Behaviour , 1995 .

[20]  T. C. Chapman,et al.  Blast wave simulation using AUTODYN2D: A parametric study , 1995 .

[21]  Norman Jones,et al.  Quasi-static analysis of structural impact damage , 1995 .

[22]  P. D. Smith,et al.  The effectiveness of walls designed for the protection of structures against airblast from high explosives , 1995 .

[23]  L. Malvar,et al.  A PLASTICITY CONCRETE MATERIAL MODEL FOR DYNA3D , 1997 .

[24]  T. A. Rose,et al.  Design charts relating to protection of structures against airblast from high explosives , 1997 .

[25]  L. Javier Malvar,et al.  Review of Strain Rate Effects for Concrete in Tension , 1998 .

[26]  P. D. Smith,et al.  PROTECTION OF STRUCTURES AGAINST AIRBURST USING BARRIERS OF LIMITED ROBUSTNESS. , 1998 .

[27]  Theodor Krauthammer,et al.  Blast-resistant structural concrete and steel connections , 1999 .

[28]  Chi Feng Lin,et al.  Impact properties and microstructure evolution of 304L stainless steel , 2001 .

[29]  Nicholas A. Warrior,et al.  Impact Test Rigs for High Strain Rate Tensile and Compressive Testing of Composite Materials , 2002 .

[30]  B. McKinley,et al.  Behaviour of double skin composite construction , 2002 .

[31]  T. A. Rose,et al.  Influence of the principal geometrical parameters of straight city streets on positive and negative phase blast wave impulses , 2002 .

[32]  D. Nethercot,et al.  Seismic performance assessment of stainless steel frames , 2003 .

[33]  Kim Rasmussen,et al.  Full-range stress–strain curves for stainless steelalloys , 2003 .

[34]  Jonathan R. Porter,et al.  Explosive Testing of Polymer Retrofit Masonry Walls , 2004 .

[35]  T. A. H. Coelho,et al.  IMPROVEMENTS IN THE DYNAMICBEHAVIOUR OF TWO DEGREE-OF-FREEDOM PLANAR OPEN-LOOP MECHANISMS , 2004 .

[36]  L. Louca,et al.  Analysis and Design of Profiled Blast Walls , 2004 .

[37]  S. Lan,et al.  Composite structural panels subjected to explosive loading , 2005 .

[38]  Matej Vesenjak,et al.  Computational and experimental crash analysis of the road safety barrier , 2005 .

[39]  Alexander Remennikov,et al.  Modelling blast loads on buildings in complex city geometries , 2005 .

[40]  R. Andersson,et al.  Development of high strain rate equations for stainless steels , 2005, Journal of Materials Engineering and Performance.

[41]  Leroy Gardner,et al.  The use of stainless steel in structures , 2005 .

[42]  Qingming Li,et al.  Local impact effects of hard missiles on concrete targets , 2005 .

[43]  B. A. Izzuddin A Simplified Model for Axially Restrained Beams Subject to Extreme Loading , 2005 .

[44]  Brian Uy Behaviour and design of high performance steel (HPS) sections with concrete infill subjected to abnormal loading , 2006 .

[45]  Xin,et al.  Development of Shallow Footing Anti-Ram Bollard System Through Modeling and Testing , 2006 .

[46]  Philip C. Terry,et al.  Security Barrier Design , 2006 .

[47]  Mark Rebentrost,et al.  Ductal – A High-Performance Material for Resistance to Blasts and Impacts , 2006 .

[48]  S. Lan,et al.  Blast Barrier Design and Testing , 2006 .

[49]  N. Peixinho Determination of crash-relevant material properties of stainless steel alloy and constitutive equations , 2006 .

[50]  Alexander Remennikov,et al.  Predicting the effectiveness of blast wall barriers using neural networks , 2007 .

[51]  Min Xie,et al.  Static tests on steel–concrete–steel sandwich beams , 2007 .

[52]  B. Uy,et al.  Behaviour of high performance steel sections subjected to impact loads , 2007 .

[53]  Roger P Bligh,et al.  Evaluation of LS-DYNA Concrete Material Model 159 , 2007 .

[54]  A. N. Dancygier,et al.  Response of high performance concrete plates to impact of non-deforming projectiles , 2007 .

[55]  Yvonne D Murray,et al.  Users Manual for LS-DYNA Concrete Material Model 159 , 2007 .

[56]  Ryuichi Kusama,et al.  Modeling and Simulation of Collisions of Heavy Trucks with Concrete Barriers , 2007 .

[57]  Tuan Ngo,et al.  Blast Loading and Blast Effects on Structures – An Overview , 2007, Electronic Journal of Structural Engineering.

[58]  Tuan Ngo,et al.  Behavior of Ultrahigh-Strength Prestressed Concrete Panels Subjected to Blast Loading , 2007 .

[59]  James Davidson COLLABORATIVE RESEARCH AND DEVELOPMENT (CR&D) Delivery Order 0064: Advanced Computational Dynamics Simulation of Protective Structures Research , 2008 .

[60]  K. Gylltoft,et al.  Comparative numerical studies of projectile impacts on plain and steel-fibre reinforced concrete , 2011 .

[61]  Hani A. Salim,et al.  Ductile Thin Sheets for Blast Retrofit PREPRINT , 2008 .

[62]  Youn-Ju Jeong,et al.  Simplified model to predict partial-interactive structural performance of steel–concrete composite slabs , 2008 .

[63]  B. Uy Stability and ductility of high performance steel sections with concrete infill , 2008 .

[64]  Hong Hao,et al.  Prediction of airblast loads on structures behind a protective barrier , 2008 .

[65]  N. R. Baddoo,et al.  Stainless steel in construction: A review of research, applications, challenges and opportunities , 2008 .

[66]  J. Terán,et al.  Assessment of stainless steel reinforcement for concrete structures rehabilitation , 2008 .

[67]  S. C. Lee,et al.  Numerical simulations of ultra-lightweight steel-concrete-steel sandwich composite panels subjected to impact , 2008 .

[68]  J. C. Chapman,et al.  Finite element analysis of steel–concrete–steel sandwich beams , 2008 .

[69]  B. Uy,et al.  Response of rigid polyurethane foam-filled steel hollow columns under low velocity impact , 2009 .

[70]  J. Y. Richard Liew,et al.  Lightweight steel-concrete-steel sandwich system with J-hook connectors , 2009 .

[71]  Andrew S. Whittaker,et al.  Blast testing of ultra-high performance fibre and FRP-retrofitted concrete slabs , 2009 .

[72]  B. Uy,et al.  Experimental behaviour of concrete-filled stainless steel tubular columns under impact loading , 2009 .

[73]  Chan Ghee Koh,et al.  Impact tests on steel–concrete–steel sandwich beams with lightweight concrete core , 2009 .

[74]  T. Børvik,et al.  Response of structures to planar blast loads - A finite element engineering approach , 2009 .

[75]  Alexander Remennikov,et al.  Simulation of impulsive loading on column using inflatable airbag technique , 2009 .

[76]  David Cormie,et al.  Blast Effects on Buildings , 2019 .

[77]  S. Millard,et al.  Dynamic enhancement of blast-resistant ultra high performance fibre-reinforced concrete under flexural and shear loading , 2010 .

[78]  Daniel G. Linzell,et al.  Behavior of portable fiber reinforced concrete vehicle barriers subject to blasts from contact charges , 2010 .

[79]  M. Nili,et al.  Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete , 2010 .

[80]  Soheil Mohammadi,et al.  Experimental and numerical investigations of low velocity impact behavior of high-performance fiber-reinforced cement based composite , 2010 .

[81]  B. Uy,et al.  Static and dynamic behaviour of non-composite steel-concrete-steel protective panels under large deformation , 2010 .

[82]  Brian Uy,et al.  Impact resistance of non composite axially restrained steel-concrete-steel sandwich panels , 2010 .

[83]  B. Uy,et al.  Numerical simulation of high-perfromance SCS panels under static and impact loading conditions , 2011 .

[84]  B. Uy,et al.  Response of Foam- and Concrete-Filled Square Steel Tubes under Low-Velocity Impact Loading , 2011 .

[85]  B. Uy,et al.  The effect of medium strain rates on the mechanical properties of high performance steels , 2011 .

[86]  Azrul A Mutalib,et al.  Development of P-I diagrams for FRP strengthened RC columns , 2011 .

[87]  J. Davidson,et al.  Resistance of Concrete Masonry Walls with Membrane Catcher Systems Subjected to Blast Loading , 2011 .

[88]  Brian Uy,et al.  Numerical simulation of the response of non-composite steel-concrete-steel sandwich panels to impact loading , 2012 .